230 research outputs found

    Iron and Manganese in the Ross Sea, Antarctica: Seasonal Iron Limitation in Antarctic Shelf Waters

    Get PDF
    Dissolved iron and manganese and total dissolvable iron were measured in water column samples from the Polynya Region of the southern Ross Sea in cruises in Nov.-Dec. 1994 (spring 1994) and Dec. 1995 to Jan. 1996 (summer 1995). Iron and manganese addition bottle incubation experiments were also performed on these cruises to assess the nutritional sufficiency of ambient iron and manganese concentrations for phytoplankton growth. Generally high dissolved iron concentrations (\u3e0.5 nM) and relatively complex iron and manganese vertical profiles were obtained in spring 1994 vs. summer 1995. Dissolved iron concentrations in the upper water column averaged 1.0 nM in spring 1994 and 0.23 nM in summer 1995, excluding 2 stations where concentrations exceeding 1 nM were attributed to inputs from melting sea ice. The Observed differences in the iron and manganese distribution between spring 1994 and summer 1995 were attributed to seasonal decreases in bottom water upwelling and sea ice melting, which supplied these metals to the upper water column, combined with the cumulative removal of iron and manganese from the water column throughout the spring and summer, due to biological uptake, vertical export, and scavenging by suspended and sinking particles. Results of metal addition bottle incubation experiments indicated that ambient dissolved Iron concentrations were adequate for phytoplankton growth requirements in spring and early summer, when algal production is highest and Phaeocystis antarctica dominates the algal community, whereas low dissolved Iron concentrations limited algal community growth later in the summer, except in stratified, Iron enriched water near melting sea ice, where diatoms are able to bloom. Observations and inferred seasonal distribution of P. antarctica and diatoms in this water suggested that iron availability and vertical mixing (i.e., irradiance) exert the primary controls on phytoplankton growth and community structure in the southern Ross Sea in spring and summer

    Analytical Intercomparison Between Flow Injection-Chemiluminescence and Flow Injection-Spectrophotometry for the Determination of Picomolar Concentrations of Iron in Seawater

    Get PDF
    A lab- and ship-based analytical intercomparison of two flow injection methods for the determination of iron in seawater was conducted, using three different sets of seawater samples collected from the Southern Ocean and South Atlantic. In one exercise, iron was determined in three different size-fractions (\u3c 0.03 &μm, \u3c 0.4 μm, and unfiltered) in an effort to better characterize the operational nature of each analytical technique with respect to filter size. Measured Fe concentrations were in the range 0.19 to 1.19 nM using flow injection with luminol chemiluminescence detection (FI-CL), and 0.07 to 1.54 nM using flow injection with catalytic spectrophotometric detection with N, N-dimethyl-p-phenylenediamine dihydrochloride (FI-DPD). The arithmetic mean for the FI-CL method was higher (by 0.09 nM) than the FI-DPD method for dissolved (\u3c 0.4 μm) Fe, a difference that is comparable to the analytical blanks, which were as high as 0.13 nM ( CL) and 0.09 nM (DPD). There was generally good agreement between the FI-CL determinations for the \u3c 0.03 μm size fraction and the FI-DPD determinations for the \u3c 0.4 μm size fraction in freshly collected samples. Differences in total-dissolvable ( unfiltered) Fe concentrations determined by the two FI methods were more variable, reflecting the added complexity associated with the analysis of partially digested particulate material in these samples. Overall, however, the FI-CL determinations were significantly (P = 0.05) lower than the FI-DPD determinations for the unfiltered samples. Our results suggest that the observed, systematic inter-method differences reflect measurement of different physicochemical fractions of Fe present in seawater, such that colloidal and/or organic iron species are better determined by the FI-CL method than the FI-DPD method. This idea is supported by our observation that inter-method differences were largest for freshly collected acidified seawater, which suggests extended storage (\u3e6 months) of acidified samples as a possible protocol for the determination of dissolved iron in seawater

    Lead Isotopes and Selected Metals in Ice from Law Dome, Antarctica

    Get PDF
    The isotopic composition. of Pb and the concentrations of Pb, Ba and Bi were measured in selected ice-core samples from Law Dome, East Antarctica, to a depth of 1196 m. The range of concentrations found in decontaminated ice was 0.03-1.5 pg g-1 for Pb, 0.9-6.1 pg g-1 for Ba and 0.4-17 fg g-1 for Bi, excluding the deepest sample which contained ∼1 ppm of rock dust. The abundances of all four stable lead isotopes were measured and gave 206Pb/207Pb ratios ≤ ∼1.23. A value of 208Pb/207Pb = 2.78 was measured in the deepest sample and is consistent with reported Pb isotope ratios of Antarctic granulites. Although the element concentrations in some samples were lower than have been reported elsewhere, geochemical and isotopic evidence indicated that a number of samples were contaminated with Pb not present in the original ice. However, it appears that the technical skills now available are approaching the level where careful sample selection, decontamination and analysis can yield accurate results for the concentration and isotopic composition of Pb in Earth\u27s purest naturally occurring ice

    Siderophore-Based Microbial Adaptations to Iron Scarcity Across the Eastern Pacific Ocean

    Get PDF
    Nearly all iron dissolved in the ocean is complexed by strong organic ligands of unknown composition. The effect of ligand composition on microbial iron acquisition is poorly understood, but amendment experiments using model ligands show they can facilitate or impede iron uptake depending on their identity. Here we show that siderophores, organic compounds synthesized by microbes to facilitate iron uptake, are a dynamic component of the marine ligand pool in the eastern tropical Pacific Ocean. Siderophore concentrations in iron-deficient waters averaged 9 pM, up to fivefold higher than in iron-rich coastal and nutrient-depleted oligotrophic waters, and were dominated by amphibactins, amphiphilic siderophores with cell membrane affinity. Phylogenetic analysis of amphibactin biosynthetic genes suggests that the ability to produce amphibactins has transferred horizontally across multiple Gammaproteobacteria, potentially driven by pressures to compete for iron. In coastal and oligotrophic regions of the eastern Pacific Ocean, amphibactins were replaced with lower concentrations (1-2 pM) of hydrophilic ferrioxamine siderophores. Our results suggest that organic ligand composition changes across the surface ocean in response to environmental pressures. Hydrophilic siderophores are predominantly found across regions of the ocean where iron is not expected to be the limiting nutrient for the microbial community at large. However, in regions with intense competition for iron, some microbes optimize iron acquisition by producing siderophores that minimize diffusive losses to the environment. These siderophores affect iron bioavailability and thus may be an important component of the marine iron cycle

    A seasonal study of dissolved cobalt in the Ross Sea, Antarctica : micronutrient behavior, absence of scavenging, and relationships with Zn, Cd, and P

    Get PDF
    © The Authors, 2010. This article is distributed under the terms of the Creative Commons Attribution 3.0 License. The definitive version was published in Biogeosciences 7 (2010): 4059-4082, doi:10.5194/bg-7-4059-2010.We report the distribution of cobalt (Co) in the Ross Sea polynya during austral summer 2005–2006 and the following austral spring 2006. The vertical distribution of total dissolved Co (dCo) was similar to soluble reactive phosphate (PO43−), with dCo and PO43− showing a significant correlation throughout the water column (r2 = 0.87, 164 samples). A strong seasonal signal for dCo was observed, with most spring samples having concentrations ranging from ~45–85 pM, whereas summer dCo values were depleted below these levels by biological activity. Surface transect data from the summer cruise revealed concentrations at the low range of this seasonal variability (~30 pM dCo), with concentrations as low as 20 pM observed in some regions where PO43− was depleted to ~0.1 μM. Both complexed Co, defined as the fraction of dCo bound by strong organic ligands, and labile Co, defined as the fraction of dCo not bound by these ligands, were typically observed in significant concentrations throughout the water column. This contrasts the depletion of labile Co observed in the euphotic zone of other ocean regions, suggesting a much higher bioavailability for Co in the Ross Sea. An ecological stoichiometry of 37.6 μmol Co:mol−1 PO43− calculated from dissolved concentrations was similar to values observed in the subarctic Pacific, but approximately tenfold lower than values in the Eastern Tropical Pacific and Equatorial Atlantic. The ecological stoichiometries for dissolved Co and Zn suggest a greater overall use of Zn relative to Co in the shallow waters of the Ross Sea, with a Co:PO43−/Zn:PO43− ratio of 1:17. Comparison of these observed stoichiometries with values estimated in culture studies suggests that Zn is a key micronutrient that likely influences phytoplankton diversity in the Ross Sea. In contrast, the observed ecological stoichiometries for Co were below values necessary for the growth of eukaryotic phytoplankton in laboratory culture experiments conducted in the absence of added zinc, implying the need for significant Zn nutrition in the Zn-Co cambialistic enzymes. The lack of an obvious kink in the dissolved Co:PO43− relationship was in contrast to Zn:PO43− and Cd:PO43− kinks previously observed in the Ross Sea. An excess uptake mechanism for kink formation is proposed as a major driver of Cd:PO43− kinks, where Zn and Cd uptake in excess of that needed for optimal growth occurs at the base of the euphotic zone, and no clear Co kink occurs because its abundances are too low for excess uptake. An unusual characteristic of Co geochemistry in the Ross Sea is an apparent lack of Co scavenging processes, as inferred from the absence of dCo removal below the euphotic zone. We hypothesize that this vertical distribution reflects a low rate of Co scavenging by Mn oxidizing bacteria, perhaps due to Mn scarcity, relative to the timescale of the annual deep winter mixing in the Ross Sea. Thus Co exhibits nutrient-like behavior in the Ross Sea, in contrast to its hybrid-type behavior in other ocean regions, with implications for the possibility of increased marine Co inventories and utility as a paleooceanographic proxy.This research was supported by the US National Science Foundation through research grants (OPP-0440840, OPP-0338097, OPP-0732665, OCE-0452883, OCE-0752991, OCE-0928414)

    A Seasonal Study of Dissolved Cobalt in the Ross Sea, Antarctica: Micronutrient Behavior, Absence of Scavenging, and Relationships with Zd, Cd, and P.

    Get PDF
    We report the distribution of cobalt (Co) in the Ross Sea polynya during austral summer 2005-2006 and the following austral spring 2006. The vertical distribution of total dissolved Co (dCo) was similar to soluble reactive phosphate (PO(4)(3-)), with dCo and PO(4)(3-) showing a significant correlation throughout the water column (r(2) = 0.87, 164 samples). A strong seasonal signal for dCo was observed, with most spring samples having concentrations ranging from similar to ~ 45-85 pM, whereas summer dCo values were depleted below these levels by biological activity. Surface transect data from the summer cruise revealed concentrations at the low range of this seasonal variability (similar to ~ 30pM dCo), with concentrations as low as 20pM observed in some regions where PO(4)(3-) was depleted to similar to 0.1 mu M. Both complexed Co, defined as the fraction of dCo bound by strong organic ligands, and labile Co, defined as the fraction of dCo not bound by these ligands, were typically observed in significant concentrations throughout the water column. This contrasts the depletion of labile Co observed in the euphotic zone of other ocean regions, suggesting a much higher bioavailability for Co in the Ross Sea. An ecological stoichiometry of 37.6 mu mol Co: mol(-1) PO(4)(3-) calculated from dissolved concentrations was similar to values observed in the subarctic Pacific, but approximately tenfold lower than values in the Eastern Tropical Pacific and Equatorial Atlantic. The ecological stoichiometries for dissolved Co and Zn suggest a greater overall use of Zn relative to Co in the shallow waters of the Ross Sea, with a Co: PO(4)(3-) / Zn: PO(4)(3-) ratio of 1:17. Comparison of these observed stoichiometries with values estimated in culture studies suggests that Zn is a key micronutrient that likely influences phytoplankton diversity in the Ross Sea. In contrast, the observed ecological stoichiometries for Co were below values necessary for the growth of eukaryotic phytoplankton in laboratory culture experiments conducted in the absence of added zinc, implying the need for significant Zn nutrition in the Zn-Co cambialistic enzymes. The lack of an obvious kink in the dissolved Co: PO(4)(3-) relationship was in contrast to Zn: PO(4)(3-) and Cd: wPO(4)(3-) kinks previously observed in the Ross Sea. An excess uptake mechanism for kink formation is proposed as a major driver of Cd: PO(4)(3-) kinks, where Zn and Cd uptake in excess of that needed for optimal growth occurs at the base of the euphotic zone, and no clear Co kink occurs because its abundances are too low for excess uptake. An unusual characteristic of Co geochemistry in the Ross Sea is an apparent lack of Co scavenging processes, as inferred from the absence of dCo removal below the euphotic zone. We hypothesize that this vertical distribution reflects a low rate of Co scavenging by Mn oxidizing bacteria, perhaps due to Mn scarcity, relative to the timescale of the annual deep winter mixing in the Ross Sea. Thus Co exhibits nutrient-like behavior in the Ross Sea, in contrast to its hybrid-type behavior in other ocean regions, with implications for the possibility of increased marine Co inventories and utility as a paleooceanographic proxy

    Assessing Phytoplankton Nutritional Status and Potential Impact of Wet Deposition in Seasonally Oligotrophic Waters of the Mid-Atlantic Bight

    Get PDF
    To assess phytoplankton nutritional status in seasonally oligotrophic waters of the southern Mid-Atlantic Bight, and the potential for rain to stimulate primary production in this region during summer, shipboard bioassay experiments were performed using natural seawater and phytoplankton collected north and south of the Gulf Stream. Bioassay treatments comprised iron, nitrate, iron + nitrate, iron + nitrate + phosphate, and rainwater. Phytoplankton growth was inferred from changes in chlorophyll a, inorganic nitrogen, and carbon-13 uptake, relative to unamended control treatments. Results indicated the greatest growth stimulation by iron + nitrate + phosphate, intermediate growth stimulation by rainwater, modest growth stimulation by nitrate and iron + nitrate, and no growth stimulation by iron. Based on these data and analysis of seawater and atmospheric samples, nitrogen was the proximate limiting nutrient, with a secondary limitation imposed by phosphorus. Our results imply that summer rain events increase new production in these waters by contributing nitrogen and phosphorus, with the availability of the latter setting the upper limit on rain-stimulated new production. Plain Language Summary Human activities have substantially increased the atmospheric loading and deposition of biologically available nitrogen, an essential nutrient, to the surface ocean. Such atmospheric inputs to the ocean will likely impact on oceanic primary production by phytoplankton, and thus the marine ecosystem and ocean carbon cycling, although the scale and spatial distribution of such impacts are not well known. In this study, we used shipboard experiments, observations, and laboratory measurements to assess the potential impacts of atmospheric nitrogen deposition in rainfall on oceanic waters of the Mid-Atlantic Bight, off the U.S. eastern seaboard, during the summer. We find that the growth of phytoplankton in these waters is limited by the availability of nitrogen during summer, such that nitrogen added to the ocean by summer rain events can considerably stimulate phytoplankton primary production. However, the biological impact of these rainwater nitrogen inputs appears to be limited by the availability of another essential nutrient, phosphorus, which is present at relatively low concentrations in rainwater. This is the first study to directly examine the nutritional status of phytoplankton in relation to the impacts of rainwater nitrogen addition on primary production in oceanic waters off the U.S. East Coast

    Controls on Dissolved Cobalt in Surface Waters of the Sargasso Sea: Comparisons with Iron and Aluminum

    Get PDF
    Dissolved cobalt (dCo), iron (dFe) and aluminum (dAl) were determined in water column samples along a meridional transect (∼31°N to 24°N) south of Bermuda in June 2008. A general north-to-south increase in surface concentrations of dFe (0.3-1.6 nM) and dAl (14-42 nM) was observed, suggesting that aerosol deposition is a significant source of dFe and dAl, whereas no clear trend was observed. for near-surface dCo concentrations. Shipboard aerosol samples indicate fractional solubility values of 8-100% for aerosol Co, which are significantly higher than corresponding estimates of the solubility of aerosol Fe (0.44-45%). Hydrographic observations and analysis of time series rain samples from Bermuda indicate that wet deposition accounts for most (\u3e80%) of the total aeolian flux of Co, and hence a significant proportion of the atmospheric input of dCo to our study region. Our aerosol data imply that the atmospheric input of dCo to the Sargasso Sea is modest, although this flux may be more significant in late summer. The water column dCo profiles reveal a vertical distribution that predominantly reflects nutrient-type behavior, vs. scavenged-type behavior for dAl, and a hybrid of nutrient- and scavenged-type behavior for dFe. Mesoscale eddies also appear to impact on the vertical distribution of dCo. The effects of biological removal of dCo from the upper water column were apparent as pronounced sub-surface min. (21 ± 4 pM dCo), coincident with maxima in Prochlorococcus abundance. These observations imply that Prochlorococcus plays a major role in removing dCo from the euphotic zone, and that the availability of dCo may regulate Prochlorococcus growth in the Sargasso Sea

    Iron in the Sargasso Sea (Bermuda Atlantic Time-series Study region) during summer : eolian imprint, spatiotemporal variability, and ecological implications

    Get PDF
    Author Posting. © American Geophysical Union, 2005. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Global Biogeochemical Cycles 19 (2005): GB4006, doi:10.1029/2004GB002445.We report iron measurements for water column and aerosol samples collected in the Sargasso Sea during July-August 2003 (summer 2003) and April-May 2004 (spring 2004). Our data reveal a large seasonal change in the dissolved iron (dFe) concentration of surface waters in the Bermuda Atlantic Time-series Study region, from ∼1–2 nM in summer 2003, when aerosol iron concentrations were high (mean 10 nmol m−3), to ∼0.1–0.2 nM in spring 2004, when aerosol iron concentrations were low (mean 0.64 nmol m−3). During summer 2003, we observed an increase of ∼0.6 nM in surface water dFe concentrations over 13 days, presumably due to eolian iron input; an estimate of total iron deposition over this same period suggests an effective solubility of 3–30% for aerosol iron. Our summer 2003 water column profiles show potentially growth-limiting dFe concentrations (0.02–0.19 nM) coinciding with a deep chlorophyll maximum at 100–150 m depth, where phytoplankton biomass is typically dominated by Prochlorococcus during late summer.Funding for this work was provided by the U.S. National Science Foundation (OCE-0222053 to P. N. S., OCE-0222046 to T. M. C., and OCE-0241310 to D. J. M.), the U.S. National Aeronautics and Space Administration (NAG5-11265 to D. J. M.), the Australian Research Council (DP0342826 to A. R. B.), the Antarctic Climate and Ecosystems Cooperative Research Center, and the H. Unger Vetlesen Foundation

    DNMT1 stability is regulated by proteins coordinating deubiquitination and acetylation-driven ubiquitination

    Get PDF
    DNA methyltransferase 1 (DNMT1) is the primary enzyme that maintains DNA methylation. We describe a previously unknown mode of regulation of DNMT1 protein stability through the coordinated action of an array of DNMT1-associated proteins. DNMT1 was destabilized by acetylation by the acetyltransferase Tip60, which triggered ubiquitination by the E3 ligase UHRF1, thereby targeting DNMT1 for proteasomal degradation. In contrast, DNMT1 was stabilized by histone deacetylase 1 (HDAC1) and the deubiquitinase HAUSP (herpes virus–associated ubiquitin-specific protease). Analysis of the abundance of DNMT1 and Tip60, as well as the association between HAUSP and DNMT1, suggested that during the cell cycle the initiation of DNMT1 degradation was coordinated with the end of DNA replication and the need for DNMT activity. In human colon cancers, the abundance of DNMT1 correlated with that of HAUSP. HAUSP knockdown rendered colon cancer cells more sensitive to killing by HDAC inhibitors both in tissue culture and in tumor xenograft models. Thus, these studies provide a mechanism-based rationale for the development of HDAC and HAUSP inhibitors for combined use in cancer therapy
    • …
    corecore