2,355 research outputs found

    An all-optical event horizon in an optical analogue of a Laval nozzle

    Full text link
    Exploiting the fact that light propagation in defocusing nonlinear media can mimic the transonic flow of an equivalent fluid, we demonstrate experimentally the formation of an all-optical event horizon in a waveguide structure akin to a hydrodynamic Laval nozzle. The analogue event horizon, which forms at the nozzle throat is suggested as a novel platform for analogous gravity experiments

    Confinement of supernova explosions in a collapsing cloud

    Full text link
    We analyze the confining effect of cloud collapse on an expanding supernova shockfront. We solve the differential equation for the forces on the shockfront due to ram pressure, supernova energy, and gravity. We find that the expansion of the shockfront is slowed and in fact reversed by the collapsing cloud. Including radiative losses and a potential time lag between supernova explosion and cloud collapse shows that the expansion is reversed at smaller distances as compared to the non-radiative case. We also consider the case of multiple supernova explosions at the center of a collapsing cloud. For instance, if we scale our self-similar solution to a single supernova of energy 10^51 ergs occurring when a cloud of initial density 10^2 H/cm^3 has collapsed by 50%, we find that the shockfront is confined to ~15 pc in ~1 Myrs. Our calculations are pertinent to the observed unusually compact non-thermal radio emission in blue compact dwarf galaxies (BCDs). More generally, we demonstrate the potential of a collapsing cloud to confine supernovae, thereby explaining how dwarf galaxies would exist beyond their first generation of star formation.Comment: 3 pages, 4 figure

    Spin resonance induced by a mechanical rotation of a polariton condensate

    Full text link
    We study theoretically the polarization dynamics in a ring-shape bosonic condensate of exciton-polaritons confined in a rotating trap. The interplay between the rotating potential and TE-TM splitting of polariton modes offers a tool of control over the spin state and the angular momentum of the condensate. Specific selection rules describing the coupling of pseudospin and angular momentum are formulated. The resonant coupling between states having linear and circular polarizations leads to the polarization beats. The effect may be seen as a polariton analogy to the electronic magnetic resonance in the presence of constant and rotating magnetic fields. Remarkably, spin beats are induced by a purely mechanical rotation of the condensate

    Persistent polarization oscillations in ring-shape polariton condensates

    Full text link
    We predict the limit cycle solution for a ring-shape bosonic condensate of exciton-polaritons confined in an optically induced rotating trap. The limit cycle manifests itself with polarization oscillations on a characteristic timescale of tens of picoseconds. The effect arises due to the interplay between orbital motion and the polarization degree of freedom. It is specific to spinor bosonic condensates and would be absent in a scalar case, where a bi-stability of stationary solutions would be observed instead. This work offers a tool of initialisation and control of qubits based on superpositions of polariton condensates characterised by different topologic charges

    Floquet engineering of the Lifshitz phase transition in the Hubbard model

    Full text link
    Within the Floquet theory of periodically driven quantum systems, we demonstrate that an off-resonant high-frequency electromagnetic field can induce the Lifshitz phase transition in periodical structures described by the one-dimensional repulsive Hubbard model with the nearest and next-nearest neighbor hopping. The transition changes the topology of electron energy spectrum at the Fermi level, transforming it from the two Fermi-points to the four Fermi-points, what facilitates the emergence of the superconducting fluctuations in the structure. Possible manifestations of the effect and conditions of its experimental observability are discussed

    Non-Catalytic Gas Phase Oxidation of Hydrocarbons

    Get PDF
    The predicted role of gas chemistry in meeting the global needs for fuels and petrochemicals makes it necessary to increase the efficiency of gas chemical processes and reduce their energy consumption. An important role in solving these problems can be played by non-catalytic autothermal oxidation processes that provide high energy efficiency with minimal demands on the composition of processed gases and their preliminary preparation. The paper presents the latest results of the development of two promising directions in natural gas processing. One, so called matrix conversion, belongs to the group of processes based on their preliminary conversion into syngas and demonstrates the possibility of a significant increase in specific capacity due to the transition to autothermal oxidative conversion. The other is based on the processes of direct conversion of hydrocarbon gases into chemical products – their partial oxidation and oxycracking with subsequent catalytic carbonylation of the resulting methanol and ethylene. In this case, additional advantages are achieved due to the possibility of direct processing of complex gas mixtures without their preliminary separation

    Fractional Variations for Dynamical Systems: Hamilton and Lagrange Approaches

    Full text link
    Fractional generalization of an exterior derivative for calculus of variations is defined. The Hamilton and Lagrange approaches are considered. Fractional Hamilton and Euler-Lagrange equations are derived. Fractional equations of motion are obtained by fractional variation of Lagrangian and Hamiltonian that have only integer derivatives.Comment: 21 pages, LaTe
    • …
    corecore