research

Confinement of supernova explosions in a collapsing cloud

Abstract

We analyze the confining effect of cloud collapse on an expanding supernova shockfront. We solve the differential equation for the forces on the shockfront due to ram pressure, supernova energy, and gravity. We find that the expansion of the shockfront is slowed and in fact reversed by the collapsing cloud. Including radiative losses and a potential time lag between supernova explosion and cloud collapse shows that the expansion is reversed at smaller distances as compared to the non-radiative case. We also consider the case of multiple supernova explosions at the center of a collapsing cloud. For instance, if we scale our self-similar solution to a single supernova of energy 10^51 ergs occurring when a cloud of initial density 10^2 H/cm^3 has collapsed by 50%, we find that the shockfront is confined to ~15 pc in ~1 Myrs. Our calculations are pertinent to the observed unusually compact non-thermal radio emission in blue compact dwarf galaxies (BCDs). More generally, we demonstrate the potential of a collapsing cloud to confine supernovae, thereby explaining how dwarf galaxies would exist beyond their first generation of star formation.Comment: 3 pages, 4 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 01/04/2019