3,606 research outputs found

    The Non-Relativistic Evolution of GRBs 980703 and 970508: Beaming-Independent Calorimetry

    Full text link
    We use the Sedov-Taylor self-similar solution to model the radio emission from the gamma-ray bursts (GRBs) 980703 and 970508, when the blastwave has decelerated to non-relativistic velocities. This approach allows us to infer the energy independent of jet collimation. We find that for GRB 980703 the kinetic energy at the time of the transition to non-relativistic evolution, t_NR ~ 40 d, is E_ST ~ (1-6)e51 erg. For GRB 970508 we find E_ST ~ 3e51 erg at t_NR ~ 100 d, nearly an order of magnitude higher than the energy derived in Frail, Waxman and Kulkarni (2000). This is due primarily to revised cosmological parameters and partly to the maximum likelihood fit we use here. Taking into account radiative losses prior to t_NR, the inferred energies agree well with those derived from the early, relativistic evolution of the afterglow. Thus, the analysis presented here provides a robust, geometry-independent confirmation that the energy scale of cosmological GRBs is about 5e51 erg, and additionally shows that the central engine in these two bursts did not produce a significant amount of energy in mildly relativistic ejecta at late time. Furthermore, a comparison to the prompt energy release reveals a wide dispersion in the gamma-ray efficiency, strengthening our growing understanding that E_gamma is a not a reliable proxy for the total energy.Comment: Submitted to ApJ; 13 pages, 6 figures, 1 table; high-resolution figures can be found at: http://www.astro.caltech.edu/~ejb/NR

    Confinement of supernova explosions in a collapsing cloud

    Full text link
    We analyze the confining effect of cloud collapse on an expanding supernova shockfront. We solve the differential equation for the forces on the shockfront due to ram pressure, supernova energy, and gravity. We find that the expansion of the shockfront is slowed and in fact reversed by the collapsing cloud. Including radiative losses and a potential time lag between supernova explosion and cloud collapse shows that the expansion is reversed at smaller distances as compared to the non-radiative case. We also consider the case of multiple supernova explosions at the center of a collapsing cloud. For instance, if we scale our self-similar solution to a single supernova of energy 10^51 ergs occurring when a cloud of initial density 10^2 H/cm^3 has collapsed by 50%, we find that the shockfront is confined to ~15 pc in ~1 Myrs. Our calculations are pertinent to the observed unusually compact non-thermal radio emission in blue compact dwarf galaxies (BCDs). More generally, we demonstrate the potential of a collapsing cloud to confine supernovae, thereby explaining how dwarf galaxies would exist beyond their first generation of star formation.Comment: 3 pages, 4 figure

    Self-similar cosmologies in 5D: spatially flat anisotropic models

    Full text link
    In the context of theories of Kaluza-Klein type, with a large extra dimension, we study self-similar cosmological models in 5D that are homogeneous, anisotropic and spatially flat. The "ladder" to go between the physics in 5D and 4D is provided by Campbell-Maagard's embedding theorems. We show that the 5-dimensional field equations RAB=0R_{AB} = 0 determine the form of the similarity variable. There are three different possibilities: homothetic, conformal and "wave-like" solutions in 5D. We derive the most general homothetic and conformal solutions to the 5D field equations. They require the extra dimension to be spacelike, and are given in terms of one arbitrary function of the similarity variable and three parameters. The Riemann tensor in 5D is not zero, except in the isotropic limit, which corresponds to the case where the parameters are equal to each other. The solutions can be used as 5D embeddings for a great variety of 4D homogeneous cosmological models, with and without matter, including the Kasner universe. Since the extra dimension is spacelike, the 5D solutions are invariant under the exchange of spatial coordinates. Therefore they also embed a family of spatially {\it inhomogeneous} models in 4D. We show that these models can be interpreted as vacuum solutions in braneworld theory. Our work (I) generalizes the 5D embeddings used for the FLRW models; (II) shows that anisotropic cosmologies are, in general, curved in 5D, in contrast with FLRW models which can always be embedded in a 5D Riemann-flat (Minkowski) manifold; (III) reveals that anisotropic cosmologies can be curved and devoid of matter, both in 5D and 4D, even when the metric in 5D explicitly depends on the extra coordinate, which is quite different from the isotropic case.Comment: Typos corrected. Minor editorial changes and additions in the Introduction and Summary section
    corecore