3,606 research outputs found
The Non-Relativistic Evolution of GRBs 980703 and 970508: Beaming-Independent Calorimetry
We use the Sedov-Taylor self-similar solution to model the radio emission
from the gamma-ray bursts (GRBs) 980703 and 970508, when the blastwave has
decelerated to non-relativistic velocities. This approach allows us to infer
the energy independent of jet collimation. We find that for GRB 980703 the
kinetic energy at the time of the transition to non-relativistic evolution,
t_NR ~ 40 d, is E_ST ~ (1-6)e51 erg. For GRB 970508 we find E_ST ~ 3e51 erg at
t_NR ~ 100 d, nearly an order of magnitude higher than the energy derived in
Frail, Waxman and Kulkarni (2000). This is due primarily to revised
cosmological parameters and partly to the maximum likelihood fit we use here.
Taking into account radiative losses prior to t_NR, the inferred energies agree
well with those derived from the early, relativistic evolution of the
afterglow. Thus, the analysis presented here provides a robust,
geometry-independent confirmation that the energy scale of cosmological GRBs is
about 5e51 erg, and additionally shows that the central engine in these two
bursts did not produce a significant amount of energy in mildly relativistic
ejecta at late time. Furthermore, a comparison to the prompt energy release
reveals a wide dispersion in the gamma-ray efficiency, strengthening our
growing understanding that E_gamma is a not a reliable proxy for the total
energy.Comment: Submitted to ApJ; 13 pages, 6 figures, 1 table; high-resolution
figures can be found at: http://www.astro.caltech.edu/~ejb/NR
Confinement of supernova explosions in a collapsing cloud
We analyze the confining effect of cloud collapse on an expanding supernova
shockfront. We solve the differential equation for the forces on the shockfront
due to ram pressure, supernova energy, and gravity. We find that the expansion
of the shockfront is slowed and in fact reversed by the collapsing cloud.
Including radiative losses and a potential time lag between supernova explosion
and cloud collapse shows that the expansion is reversed at smaller distances as
compared to the non-radiative case. We also consider the case of multiple
supernova explosions at the center of a collapsing cloud. For instance, if we
scale our self-similar solution to a single supernova of energy 10^51 ergs
occurring when a cloud of initial density 10^2 H/cm^3 has collapsed by 50%, we
find that the shockfront is confined to ~15 pc in ~1 Myrs. Our calculations are
pertinent to the observed unusually compact non-thermal radio emission in blue
compact dwarf galaxies (BCDs). More generally, we demonstrate the potential of
a collapsing cloud to confine supernovae, thereby explaining how dwarf galaxies
would exist beyond their first generation of star formation.Comment: 3 pages, 4 figure
Self-similar cosmologies in 5D: spatially flat anisotropic models
In the context of theories of Kaluza-Klein type, with a large extra
dimension, we study self-similar cosmological models in 5D that are
homogeneous, anisotropic and spatially flat. The "ladder" to go between the
physics in 5D and 4D is provided by Campbell-Maagard's embedding theorems. We
show that the 5-dimensional field equations determine the form of
the similarity variable. There are three different possibilities: homothetic,
conformal and "wave-like" solutions in 5D. We derive the most general
homothetic and conformal solutions to the 5D field equations. They require the
extra dimension to be spacelike, and are given in terms of one arbitrary
function of the similarity variable and three parameters. The Riemann tensor in
5D is not zero, except in the isotropic limit, which corresponds to the case
where the parameters are equal to each other. The solutions can be used as 5D
embeddings for a great variety of 4D homogeneous cosmological models, with and
without matter, including the Kasner universe. Since the extra dimension is
spacelike, the 5D solutions are invariant under the exchange of spatial
coordinates. Therefore they also embed a family of spatially {\it
inhomogeneous} models in 4D. We show that these models can be interpreted as
vacuum solutions in braneworld theory. Our work (I) generalizes the 5D
embeddings used for the FLRW models; (II) shows that anisotropic cosmologies
are, in general, curved in 5D, in contrast with FLRW models which can always be
embedded in a 5D Riemann-flat (Minkowski) manifold; (III) reveals that
anisotropic cosmologies can be curved and devoid of matter, both in 5D and 4D,
even when the metric in 5D explicitly depends on the extra coordinate, which is
quite different from the isotropic case.Comment: Typos corrected. Minor editorial changes and additions in the
Introduction and Summary section
- …
