22 research outputs found

    New low-stress PECVD poly-SiGe layers for MEMS

    Get PDF
    Thick poly-SiGe layers, deposited by plasma-enhanced chemical vapor deposition (PECVD), are very promising structural layers for use in microaccelerometers, microgyroscopes or for thin-film encapsulation, especially for applications where the thermal budget is limited. In this work it is shown for the first time that these layers are an attractive alternative to low-pressure CVD (LPCVD) poly-Si or poly-SiGe because of their high growth rate (100-200 nm/min) and low deposition temperature (520/spl deg/C-590/spl deg/C). The combination of both of these features is impossible to achieve with either LPCVD SiGe (2-30 nm/min growth rate) or LPCVD poly-Si (annealing temperature higher than 900/spl deg/C to achieve structural layer having low tensile stress). Additional advantages are that no nucleation layer is needed (deposition directly on SiO/sub 2/ is possible) and that the as-deposited layers are polycrystalline. No stress or dopant activation anneal of the structural layer is needed since in situ phosphorus doping gives an as-deposited tensile stress down to 20 MPa, and a resistivity of 10 m/spl Omega/-cm to 30 m/spl Omega/-cm. With in situ boron doping, resistivities down to 0.6 m/spl Omega/-cm are possible. The use of these films as an encapsulation layer above an accelerometer is shown

    A single-ended CMOS sensing circuit for MEMS gyroscope with noise cancellation

    No full text
    [abstract not available

    On-Chip Micromachined Dielectric Resonator Antennas Loaded with Parasitic Circular/Crescent Patch for mm-Wave Applications

    No full text
    [abstract not available]https://fount.aucegypt.edu/faculty_book_chapters/1354/thumbnail.jp

    Generation of approximate focus-wave-mode pulses from wide-band dynamic Gaussian apertures

    No full text
    It is demonstrated that an approximation to the focus-wave-mode field can be generated from a dynamic Gaussian aperture. A source of this type is characterized by the time variation of its effective radius. The performance of such an aperture is studied in detail; it is demonstrated that the dynamic aperture shows a great enhancement over the corresponding static one. The types of source investigated provide an efficient scheme to launch narrow Gaussian pulses from extended apertures

    On-chip micromachined dipole antenna with parasitic radiator for mm-wave wireless systems

    No full text
    [abstract not available
    corecore