71 research outputs found

    Challenges and limits of mechanical stability in 3D direct laser writing

    Get PDF
    Direct laser writing is an effective technique for fabrication of complex 3D polymer networks using ultrashort laser pulses. Practically, it remains a challenge to design and fabricate high performance materials with different functions that possess a combination of high strength, substantial ductility, and tailored functionality, in particular for small feature sizes. To date, it is difficult to obtain a time-resolved microscopic picture of the printing process in operando. To close this gap, we herewith present a molecular dynamics simulation approach to model direct laser writing and investigate the effect of writing condition and aspect ratio on the mechanical properties of the printed polymer network. We show that writing conditions provide a possibility to tune the mechanical properties and an optimum writing condition can be applied to fabricate structures with improved mechanical properties. We reveal that beyond the writing parameters, aspect ratio plays an important role to tune the stiffness of the printed structures

    A Game Theory Approach for Conjunctive Use Optimization Model Based on Virtual Water Concept

    Get PDF
    In this study to allocate the agricultural and environmental water, considering virtual water concept, a multi-objective optimization model based on NSGA-II is developed. The objectives consist of equity maximization, agricultural benefit maximization for each region, maximization of green water utilization and finally minimization of environmental shortage. Then a cooperative game (Grand Coalition) model is presented by forming all possible coalitions. By the game model including Nucleolus, Proportional Nucleolus, Normal Nucleolus and Shapley methods, the benefit is reallocated based on all Pareto optimal solutions obtained from multi-objective optimization model. Then using two famous fallback bargaining methods, Unanimity and q-Approval, preferable alternative (solution) for each of the cooperative games is determined. Finally, based on the obtained benefit for each selected alternatives, the two most beneficial alternatives are chosen. The proposed methodology applied for water allocation of Minoo-Dasht, Azad-Shahr and Gonbad-Kavoos cities in Golestan province, Iran for a 3-year period as a case study. Also, eight crops including Wheat, Alfalfa, Barley, Bean, Rice, Corn, Soya, and Cotton are selected based on local experts’ recommendations. The models’ results indicated no significant difference between the grand coalition model and the multi-objective optimization model in terms of the average cultivation area (a relative change of 2.1%), while lower agricultural water allocation occurred for the grand coalition model (about 10.35 percent average) compared with the multi-objective optimization model. It is also observed that more agricultural benefit gained by the grand coalition model (32 percent average). Finally, it is found that Wheat and Corn hold the most rates of import and export, respectively, and Rice was the crop which has the least shortage of production to supply food demand

    Developing a Non-Cooperative Optimization Model for Water and Crop Area Allocation Based on Leader-Follower Game

    Get PDF
    In this paper, a mathematical model for conflict resolution among a diverse set of agricultural water users in Golestan province, Iran, is developed. Given the bi-level nature of the distribution of power in the current problem, a combination of Leader–Follower game and Nash–Harsanyi bargaining solution method is employed to find optimal water and crop area allocations. The Golestan Regional Water Authority is the leader in this setting, controlling the total water allocations; and the agricultural sectors are the followers, competing over the allocated water. Two objectives for the leader are (i) maximizing profits, and (ii) maximizing share of green water in total agricultural production through selecting more efficient crop patterns. The followers’ objective is merely maximizing obtained benefits for the selected crop patterns. Virtual water concept is also factored into the related objective functions, and the water allocation problem is solved considering spatio-temporal crop pattern along with a dynamic water pricing system. This involves using a hybrid optimization structure as a new approach to solving two level optimization problems. The results show that the leader’s income is independent of total water allocation and is only affected by crop pattern and crop area, two factors which drive water price too. The followers’ benefit also depends on crop pattern and crop area, as they influence the crop yield, cost and water price. Finally, green water plays a key role in selecting the optimal crop pattern and crop area

    Monte-Carlo Simulations of Soft Matter Using SIMONA: A Review of Recent Applications

    Get PDF
    Molecular simulations such as Molecular Dynamics (MD) and Monte Carlo (MC) have gained increasing importance in the explanation of various physicochemical and biochemical phenomena in soft matter and help elucidate processes that often cannot be understood by experimental techniques alone. While there is a large number of computational studies and developments in MD, MC simulations are less widely used, but they offer a powerful alternative approach to explore the potential energy surface of complex systems in a way that is not feasible for atomistic MD, which still remains fundamentally constrained by the femtosecond timestep, limiting investigations of many essential processes. This paper provides a review of the current developments of a MC based code, SIMONA, which is an efficient and versatile tool to perform large-scale conformational sampling of different kinds of (macro)molecules. We provide an overview of the approach, and an application to soft-matter problems, such as protocols for protein and polymer folding, physical vapor deposition of functional organic molecules and complex oligomer modeling. SIMONA offers solutions to different levels of programming expertise (basic, expert and developer level) through the usage of a designed Graphical Interface pre-processor, a convenient coding environment using XML and the development of new algorithms using Python/C++. We believe that the development of versatile codes which can be used in different fields, along with related protocols and data analysis, paves the way for wider use of MC methods

    Tacticity dependence of single chain polymer folding

    Get PDF
    Precision polymerization techniques offer the exciting opportunity to manufacture single-chain nanoparticles (SCNPs) with intramolecular crosslinks placed in specific positions along the polymer chain. Earlier studies showed that synthetic polymer chains can fold into defined SCNP conformations through a reversible two-state process, similar to that observed for small peptides and proteins – yet far behind in its structural sophistication. While the natural structures of proteins arise from polypeptides of perfectly defined stereochemistry, the role of main-chain stereochemistry on SCNP folding remains largely unexplored. To investigate the effect of tacticity on SCNP architectures, the development of specific simulation strategies is critical to provide reliable data. Herein, we investigate the structural transitions of SCNPs of different stereochemistries, i.e. atactic, syndiotactic and isotactic of various lengths (L = 10 to L = 30) using all-atom Monte-Carlo simulations. The results indicate that structural transitions occur in syndiotactic polymers at lower temperature compared to atactic and isotactic polymer chains. The effect of main chain stereochemistry on the transition temperature was found to be especially pronounced for shorter polymer chains of length L = 10 to L = 20

    Sampling of the conformational landscape of small proteins with Monte Carlo methods

    Get PDF
    Computer simulation provides an increasingly realistic picture of large-scale conformational change of proteins, but investigations remain fundamentally constrained by the femtosecond timestep of molecular dynamics simulations. For this reason, many biologically interesting questions cannot be addressed using accessible state-of-the-art computational resources. Here, we report the development of an all-atom Monte Carlo approach that permits the modelling of the large-scale conformational change of proteins using standard off-the-shelf computational hardware and standard all-atom force fields. We demonstrate extensive thermodynamic characterization of the folding process of the α-helical Trp-cage, the Villin headpiece and the ÎČ-sheet WW-domain. We fully characterize the free energy landscape, transition states, energy barriers between different states, and the per-residue stability of individual amino acids over a wide temperature range. We demonstrate that a state-of-the-art intramolecular force field can be combined with an implicit solvent model to obtain a high quality of the folded structures and also discuss limitations that still remain

    Covalent Adaptable Microstructures via Combining Two‐Photon Laser Printing and Alkoxyamine Chemistry: Toward Living 3D Microstructures

    Get PDF
    Manufacturing programmable materials, whose mechanical properties can be adapted on demand, is highly desired for their application in areas ranging from robotics, to biomedicine, or microfluidics. Herein, the inclusion of dynamic and living bonds, such as alkoxyamines, in a printable formulation suitable for two-photon 3D laser printing is exploited. On one hand, taking advantage of the dynamic covalent character of alkoxyamines, the nitroxide exchange reaction is investigated. As a consequence, a reduction of the Young®s Modulus by 50%, is measured by nanoindentation. On the other hand, due to its “living” characteristic, the chain extension becomes possible via nitroxide mediated polymerization. In particular, living nitroxide mediated polymerization of styrene results not only in a dramatic increase of the volume (≈8 times) of the 3D printed microstructure but also an increase of the Young\u27s Modulus by two orders of magnitude (from 14 MPa to 2.7 GPa), while maintaining the shape including fine structural details. Thus, the approach introduces a new dimension by enabling to create microstructures with dynamically tunable size and mechanical properties

    MOF‐Hosted Enzymes for Continuous Flow Catalysis in Aqueous and Organic Solvents

    Get PDF
    Fully exploiting the potential of enzymes in cell-free biocatalysis requires stabilization of the catalytically active proteins and their integration into efficient reactor systems. Although in recent years initial steps towards the immobilization of such biomolecules in metal-organic frameworks (MOFs) have been taken, these demonstrations have been limited to batch experiments and to aqueous conditions. Here we demonstrate a MOF-based continuous flow enzyme reactor system, with high productivity and stability, which is also suitable for organic solvents. Under aqueous conditions, the stability of the enzyme was increased 30-fold, and the space-time yield exceeded that obtained with other enzyme immobilization strategies by an order of magnitude. Importantly, the infiltration of the proteins into the MOF did not require additional functionalization, thus allowing for time- and cost-efficient fabrication of the biocatalysts using label-free enzymes
    • 

    corecore