195 research outputs found

    Plant Genome Engineering for Targeted Improvement of Crop Traits

    Get PDF
    To improve food security, plant biology research aims to improve crop yield and tolerance to biotic and abiotic stress, as well as increasing the nutrient contents of food. Conventional breeding systems have allowed breeders to produce improved varieties of many crops; for example, hybrid grain crops show dramatic improvements in yield. However, many challenges remain and emerging technologies have the potential to address many of these challenges. For example, site-specific nucleases such as TALENs and CRISPR/Cas systems, which enable high-efficiency genome engineering across eukaryotic species, have revolutionized biological research and its applications in crop plants. These nucleases have been used in diverse plant species to generate a wide variety of site-specific genome modifications through strategies that include targeted mutagenesis and editing for various agricultural biotechnology applications. Moreover, CRISPR/Cas genome-wide screens make it possible to discover novel traits, expand the range of traits, and accelerate trait development in target crops that are key for food security. Here, we discuss the development and use of various site-specific nuclease systems for different plant genome-engineering applications. We highlight the existing opportunities to harness these technologies for targeted improvement of traits to enhance crop productivity and resilience to climate change. These cutting-edge genome-editing technologies are thus poised to reshape the future of agriculture and food security

    REDUCTION OF ACRYLAMIDE FORMATION IN POTATO CHIPS BY AQUEOUS EXTRACT OF ROSELLE

    Get PDF
    Acrylamide (AA) is an industrial chemical formed in some foods; particularly starchy foods, during heating process such as frying, baking and roasting. AA is proven to be carcinogenic in animals and a probable human carcinogen formed in foods by the reaction of free amino acid with reducing sugars as part of the Maillard reaction during heating under high temperature and low moisture conditions. Therefore, the aim of this study was to use aqueous extract of roselle as a natural source of antioxidants to reduce AA formed in potato chips. The results showed that the percentages of reduction of AA were 10.1% and 12.92% in samples that were treated with 1% of aqueous extract of roselle and soaked at 10 and 20 mins respectively. There was observed increase in AA reduction by it was 75.41% and 82.46% after soaking  at 10 and 20 mins respectively with 5% extract. Conclusively, the aqueous extract of roselle is effective in reducing the AA formed in potato chips due as it contains of antioxidant compounds. Keywords: acrylamide (AA), potato, roselle, soaking and reduction Â

    A Phylogenomic Analysis of the Floral Transcriptomes of Sexually Deceptive and Rewarding European Orchids, Ophrys and Gymnadenia.

    Get PDF
    The orchids (Orchidaceae) constitute one of the largest and most diverse families of flowering plants. They have evolved a great variety of adaptations to achieve pollination by a diverse group of pollinators. Many orchids reward their pollinators, typically with nectar, but the family is also well-known for employing deceptive pollination strategies in which there is no reward for the pollinator, in the most extreme case by mimicking sexual signals of pollinators. In the European flora, two examples of these different pollination strategies are the sexually deceptive genus Ophrys and the rewarding genus Gymnadenia, which differ in their level of pollinator specialization; Ophrys is typically pollinated by pseudo-copulation of males of a single insect species, whilst Gymnadenia attracts a broad range of floral visitors. Here, we present and describe the annotated floral transcriptome of Ophrys iricolor, an Andrena-pollinated representative of the genus Ophrys that is widespread throughout the Aegean. Furthermore, we present additional floral transcriptomes of both sexually deceptive and rewarding orchids, specifically the deceptive Ophrys insectifera, Ophrys aymoninii, and an updated floral transcriptome of Ophrys sphegodes, as well as the floral transcriptomes of the rewarding orchids Gymnadenia conopsea, Gymnadenia densiflora, Gymnadenia odoratissima, and Gymnadenia rhellicani (syn. Nigritella rhellicani). Comparisons of these novel floral transcriptomes reveal few annotation differences between deceptive and rewarding orchids. Since together, these transcriptomes provide a representative sample of the genus-wide taxonomic diversity within Ophrys and Gymnadenia (Orchidoideae: Orchidinae), we employ a phylogenomic approach to address open questions of phylogenetic relationships within the genera. Specifically, this includes the controversial placement of O. insectifera within the Ophrys phylogeny and the placement of "Nigritella"-type morphologies within the phylogeny of Gymnadenia. Whereas in Gymnadenia, several conflicting topologies are supported by a similar number of gene trees, a majority of Ophrys gene topologies clearly supports a placement of O. insectifera as sister to a clade containing O. sphegodes

    High frequency oscillatory ventilation and prone positioning in a porcine model of lavage-induced acute lung injury

    Get PDF
    BACKGROUND: This animal study was conducted to assess the combined effects of high frequency oscillatory ventilation (HFOV) and prone positioning on pulmonary gas exchange and hemodynamics. METHODS: Saline lung lavage was performed in 14 healthy pigs (54 ± 3.1 kg, mean ± SD) until the arterial oxygen partial pressure (PaO(2)) decreased to 55 ± 7 mmHg. The animals were ventilated in the pressure controlled mode (PCV) with a positive endexpiratory pressure (PEEP) of 5 cmH(2)O and a tidal volume (V(T)) of 6 ml/kg body weight. After a stabilisation period of 60 minutes, the animals were randomly assigned to 2 groups. Group 1: HFOV in supine position; group 2: HFOV in prone position. After evaluation of prone positioning in group 2, the mean airway pressure (P(mean)) was increased by 3 cmH(2)O from 16 to 34 cmH(2)O every 20 minutes in both groups accompanied by measurements of respiratory and hemodynamic variables. Finally all animals were ventilated supine with PCV, PEEP = 5 cm H(2)O, V(T )= 6 ml/kg. RESULTS: Combination of HFOV with prone positioning improves oxygenation and results in normalisation of cardiac output and considerable reduction of pulmonary shunt fraction at a significant (p < 0.05) lower P(mean )than HFOV and supine positioning. CONCLUSION: If ventilator induced lung injury is ameliorated by a lower P(mean), a combined treatment approach using HFOV and prone positioning might result in further lung protection

    The detrimental role of angiotensin receptor agonistic autoantibodies in intrauterine growth restriction seen in preeclampsia

    Get PDF
    Growth-restricted fetuses are at risk for a variety of lifelong medical conditions. Preeclampsia, a life-threatening hypertensive disorder of pregnancy, is associated with fetuses who suffer from intrauterine growth restriction (IUGR). Recently, emerging evidence indicates that preeclamptic women harbor AT1 receptor agonistic autoantibodies (AT1-AAs) that contribute to the disease features. However, the exact role of AT1-AAs in IUGR and the underlying mechanisms have not been identified. We report that these autoantibodies are present in the cord blood of women with preeclampsia and retain the ability to activate AT1 receptors. Using an autoantibody-induced animal model of preeclampsia, we show that AT1-AAs cross the mouse placenta, enter fetal circulation, and lead to small fetuses with organ growth retardation. AT1-AAs also induce apoptosis in the placentas of pregnant mice, human villous explants, and human trophoblast cells. Finally, autoantibody-induced IUGR and placental apoptosis are diminished by either losartan or an autoantibody-neutralizing peptide. Thus, these studies identify AT1-AA as a novel causative factor of preeclampsia-associated IUGR and offer two possible underlying mechanisms: a direct detrimental effect on fetal development by crossing the placenta and entering fetal circulation, and indirectly through AT1-AA–induced placental damage. Our findings highlight AT1-AAs as important therapeutic targets

    Endothelium-derived Vasoactive Factors and Hypertension: Possible Roles in Pathogenesis and as Treatment Targets

    Get PDF
    Endothelial cells regulate vascular tone by releasing various contracting and relaxing factors including nitric oxide (NO), arachidonic acid metabolites (derived from cyclooxygenases, lipoxygenases, and cytochrome P450 monooxygenases), reactive oxygen species, and vasoactive peptides. Additionally, another pathway associated with the hyperpolarization of the underlying smooth muscle cells plays a predominant role in resistance arteries. Endothelial dysfunction is a multifaceted disorder, which has been associated with hypertension of diverse etiologies, involving not only alterations of the L-arginine NO-synthase–soluble guanylyl cyclase pathway but also reduced endothelium-dependent hyperpolarizations and enhanced production of contracting factors, particularly vasoconstrictor prostanoids. This brief review highlights these different endothelial pathways as potential drug targets for novel treatments in hypertension and the associated endothelial dysfunction and end-organ damage

    Expression of NADPH Oxidase (NOX) 5 in Rabbit Corneal Stromal Cells

    Get PDF
    To determine whether NOX 5 is expressed in rabbit corneal stromal cells (RCSC). NADPH oxidases (NOXes) are enzymes that preferentially use NADPH as a substrate and generate superoxide. Several isoforms of NOXes function as multi-protein complexes while NOX5 and DUOXs do not require the accessory proteins for their activity and possess calcium binding EF hands.Human NOX5 primers were used to amplify the rabbit NOX5 by RT-PCR. Amplified product was sequenced to confirm its identity. The protein encoded by the NOX5 was identified by western blot analysis. NOX5 siRNA was used to reduce transcript, protein, and calcium stimulated activity. In silico analyses were performed to establish the putative structure, functions, and evolution of rabbit NOX5.NOX activity was measured in RCSC with NADPH rather than NADH as a substrate. RT-PCR with NOX5 primers amplified 288 bp product using RCSC cDNA, which, when sequenced, confirmed its identity to human NOX5 mRNA. This sequence was used to predict the rabbit (Oryctolagus cuniculus) NOX5 gene. NOX5 siRNA reduced amounts of NOX5 mRNA in RCSC and reduced ionomycin stimulated superoxide production. A protein of about 65 to 70 kDa encoded by the NOX5 was detected by western blot analysis. In silico analysis predicted a putative rabbit NOX5 protein containing 801 amino acids. Motif searches predicted the presence of at least 3 putative EF-hands in N-terminus and a NOX domain in C terminal region.The data document that the NOX5 gene was expressed in cells of lagomorphs unlike rodents, making the rabbit an interesting model to study NOX5 functions. The activity of the rabbit NOX5 was calcium stimulated, a trait of NOX5 in general. NOX5 may also prove to be a useful genetic marker for studying the taxonomic position of lagomorphs and the Glires classification

    A redox switch in angiotensinogen modulates angiotensin release.

    Get PDF
    Blood pressure is critically controlled by angiotensins, which are vasopressor peptides specifically released by the enzyme renin from the tail of angiotensinogen-a non-inhibitory member of the serpin family of protease inhibitors. Although angiotensinogen has long been regarded as a passive substrate, the crystal structures solved here to 2.1 Å resolution show that the angiotensin cleavage site is inaccessibly buried in its amino-terminal tail. The conformational rearrangement that makes this site accessible for proteolysis is revealed in our 4.4 Å structure of the complex of human angiotensinogen with renin. The co-ordinated changes involved are seen to be critically linked by a conserved but labile disulphide bridge. Here we show that the reduced unbridged form of angiotensinogen is present in the circulation in a near 40:60 ratio with the oxidized sulphydryl-bridged form, which preferentially interacts with receptor-bound renin. We propose that this redox-responsive transition of angiotensinogen to a form that will more effectively release angiotensin at a cellular level contributes to the modulation of blood pressure. Specifically, we demonstrate the oxidative switch of angiotensinogen to its more active sulphydryl-bridged form in the maternal circulation in pre-eclampsia-the hypertensive crisis of pregnancy that threatens the health and survival of both mother and child
    • …
    corecore