1,136 research outputs found

    Postprandial morphological response of the intestinal epithelium of the Burmese python (Python molurus)

    Full text link
    The postprandial morphological changes of the intestinal epithelium of Burmese pythons were examined using fasting pythons and at eight time points after feeding. In fasting pythons, tightly packed enterocytes possess very short microvilli and are arranged in a pseudostratified fashion. Enterocyte width increases by 23% within 24 h postfeeding, inducing significant increases in villus length and intestinal mass. By 6 days postfeeding, enterocyte volume had peaked, following as much as an 80% increase. Contributing to enterocyte hypertrophy is the cellular accumulation of lipid droplets at the tips and edges of the villi of the proximal and middle small intestine, but which were absent in the distal small intestine. At 3 days postfeeding, conventional and environmental scanning electron microscopy revealed cracks and lipid extrusion along the narrow edges of the villi and at the villus tips. Transmission electron microscopy demonstrated the rapid postprandial lengthening of enterocyte microvilli, increasing 4.8-fold in length within 24 h, and the maintaining of that length through digestion. Beginning at 24 h postfeeding, spherical particles were found embedded apically within enterocytes of the proximal and middle small intestine. These particles possessed an annular-like construction and were stained with the calcium-stain Alizarine red S suggesting that they were bone in origin. Following the completion of digestion, many of the postprandial responses were reversed, as observed by the atrophy of enterocytes, the shortening of villi, and the retraction of the microvilli. Further exploration of the python intestine will reveal the underlying mechanisms of these trophic responses and the origin and fate of the engulfed particles

    Legally Speaking / Trademark Part Deux

    Get PDF

    Potential for Electropositive Metal to Reduce the Interactions of Atlantic Sturgeon with Fishing Gear

    Full text link
    Atlantic sturgeon (Acipenser oxyrhynchus) populations have been declared either endangered or threatened under the U.S. Endangered Species Act. Effective measures to repel sturgeon from fishing gear would be beneficial to both fish and fishers because they could reduce both fishery‐associated mortality and the need for seasonal and area closures of specific fisheries. Some chondrostean fishes (e.g., sturgeons and paddlefishes) can detect weak electric field gradients (possibly as low as 5 Μv/cm) due to arrays of electroreceptors (ampullae of Lorenzini) on their snout and gill covers. Weak electric fields, such as those produced by electropositive metals (typically mixtures of the lanthanide elements), could therefore potentially be used as a deterrent. To test this idea, we recorded the behavioral responses of juvenile Atlantic sturgeon (31–43 cm fork length) to electropositive metal (primarily a mixture of the lanthanide elements neodymium and praseodymium) both in the presence and absence of food stimuli. Trials were conducted in an approximately 2.5 m diameter × 0.3 m deep tank, and fish behaviors were recorded with an overhead digital video camera. Video records were subsequently digitized (x, y coordinate system), the distance between the fish and the electropositive metal calculated, and data summarized by compiling frequency distributions with 5‐cm bins. Juvenile sturgeon showed clear avoidance of electropositive metal but only when food was present. On the basis of our results, we conclude that the electropositive metals, or other sources of weak electric fields, may eventually be used to reduce the interactions of Atlantic sturgeon with fishing gear, but further investigation is needed. El Potencial del Metal Electropositivo para Reducir las Interacciones del Esturión Atlántico con Instrumentos de Pesca Bouyoucos, Bushnell & Brill 13–003 Resumen Las poblaciones del esturión atlántico ( Acipenser oxyrhynchus ) han sido declaradas como en peligro o amenazadas bajo el Acta de Especies en Peligro de los Estados Unidos. Las medidas efectivas para repeler a los esturiones de los instrumentos de pesca serían benéficas para los peces y los pescadores ya que podrían reducir la mortalidad asociada a la pesca y la necesidad de los cierres temporales y de área de pesquerías específicas. Algunos peces chondrosteos (p. ej.: esturiones y peces espátula) pueden detectar gradientes débiles de campos eléctricos (posiblemente tan bajos como 5 μV cm −1 ) debido a grupos de electroreceptores (ámpulas de Lorenzini) en su hocico y opérculos. Los campos eléctricos débiles, como aquellos producidos por metales electropositivos (comúnmente mezcla de elementos lantánidos), podrían entonces ser usados potencialmente como un disuasivo. Para probar esta idea, filmamos las respuestas conductuales de esturiones juveniles (31 – 43 cm de largo) a metales electropositivos (principalmente una mezcla de los elementos lantánidos neodimio y praseodimio) tanto en la presencia como en la ausencia de estímulos de alimento. Las pruebas se realizaron en un tanque de ≈ 2.5 metros de diámetro x 0.3 m de profundidad, y las conductas de los peces se filmaron con una cámara digital de video colocada sobre el tanque. Las filmaciones después se digitaron (sistema de coordenadas x, y), se calculó la distancia entre los peces y el metal electropositivo y se resumió la información al compilar las distribuciones de la frecuencia con contenedores de 5 cm. Los esturiones juveniles mostraron clara evitación del metal electropositivo pero sólo cuando el alimento estaba presente. Basándonos en nuestros resultados, concluimos que los metales electropositivos, u otras fuentes de campos eléctricos débiles, puede ser usada eventualmente para reducir las interacciones del esturión atlántico con los instrumentos de pesca, pero es necesario llevar a cabo más investigaciones.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/102646/1/cobi12200.pd

    Legally Speaking

    Get PDF

    Oceanic migration rates of Upper Chesapeake Bay striped bass (Morone saxatilis), determined by otolith microchemical analysis*

    Get PDF
    Oceanic incidence and spawning frequency of Chesapeake Bay striped bass (Morone saxatilis) were estimated by using microchemical analysis of strontium in otoliths. Otoliths from 40 males and 82 females sampled from Maryland’s portion of the Chesapeake Bay were analyzed for seasonal and age-specific patterns in strontium and calcium levels. The proportion of oceanic females increased from 50% to 75% between ages seven to 13; the proportion of oceanic males increased from 20% to ~50% between ages four to 13. Contrary to an earliermodel of Chesapeake Bay striped bass migration, results indicated that a substantial number of males undertook oceanic migrations. Further, we observed no mass emigration of females from three to four years of age from the Chesapeake Bay. Seasonal patterns of estuarine habitat use were consistent with annual spawning runs by striped bass of mature age classes, but with noteworthy exceptions for newly mature females. Evidence of an early oceanic presence indicated that Chesapeake Bay yearlings move into coastal regions—a pattern observed also for Hudson River striped bass. Otolith microchemical analyses revealed two types of behaviors (estuarine and oceanic) that confirm migratory behaviors recently determined for other populations of striped bass and diadromous species (e.g., American eels [Anguilla rostrata] American shad [Alosa sapidissima] and white perch [Morone Americana])

    Survey of bacterial diversity in chronic wounds using Pyrosequencing, DGGE, and full ribosome shotgun sequencing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Chronic wound pathogenic biofilms are host-pathogen environments that colonize and exist as a cohabitation of many bacterial species. These bacterial populations cooperate to promote their own survival and the chronic nature of the infection. Few studies have performed extensive surveys of the bacterial populations that occur within different types of chronic wound biofilms. The use of 3 separate16S-based molecular amplifications followed by pyrosequencing, shotgun Sanger sequencing, and denaturing gradient gel electrophoresis were utilized to survey the major populations of bacteria that occur in the pathogenic biofilms of three types of chronic wound types: diabetic foot ulcers (D), venous leg ulcers (V), and pressure ulcers (P).</p> <p>Results</p> <p>There are specific major populations of bacteria that were evident in the biofilms of all chronic wound types, including <it>Staphylococcus, Pseudomonas, Peptoniphilus, Enterobacter, Stenotrophomonas, Finegoldia</it>, and <it>Serratia </it>spp. Each of the wound types reveals marked differences in bacterial populations, such as pressure ulcers in which 62% of the populations were identified as obligate anaerobes. There were also populations of bacteria that were identified but not recognized as wound pathogens, such as <it>Abiotrophia para-adiacens </it>and <it>Rhodopseudomonas </it>spp. Results of molecular analyses were also compared to those obtained using traditional culture-based diagnostics. Only in one wound type did culture methods correctly identify the primary bacterial population indicating the need for improved diagnostic methods.</p> <p>Conclusion</p> <p>If clinicians can gain a better understanding of the wound's microbiota, it will give them a greater understanding of the wound's ecology and will allow them to better manage healing of the wound improving the prognosis of patients. This research highlights the necessity to begin evaluating, studying, and treating chronic wound pathogenic biofilms as multi-species entities in order to improve the outcomes of patients. This survey will also foster the pioneering and development of new molecular diagnostic tools, which can be used to identify the community compositions of chronic wound pathogenic biofilms and other medical biofilm infections.</p

    Sequential Grazing Systems for Beef Cattle Production

    Get PDF
    Pasture productivity in Iowa is often limited by low productivity of cool-season grasses during summer. This uneven seasonal distribution of for age production could be improved by including species in pasture systems that perform better under higher temperatures. Warm-season grasses produce most of their growth during summer when cool-season grasses are semi -dormant. By using cool-season and warm-season pastures in a sequential system it should be possible to improve seasonal productivity. The overall objective of this project i s to evaluate the productivity of sequential grazing system s for beef cattle production in Southern Iowa. Specific objectives are to: 1) evaluate the impact of legumes on the productivity of cool-season pastures grazed in the spring and fall, 2) evaluate warm-season grasses f or summer grazing, and 3) determine the effects of pasture sequence on the productivity of season-long grazing systems

    Oral Bromelain Attenuates Inflammation in an Ovalbumin-induced Murine Model of Asthma

    Get PDF
    Bromelain, a widely used pineapple extract with cysteine protease activity, has been shown to have immunomodulatory effects in a variety of immune system models. The purpose of the present study was to determine the effects of orally administered bromelain in an ovalbumin (OVA)-induced murine model of acute allergic airway disease (AAD). To establish AAD, female C57BL/6J mice were sensitized with intraperitoneal (i.p.) OVA/alum and then challenged with OVA aerosols for 3 days. Mice were gavaged with either (phosphate buffered saline)PBS or 200 mg/kg bromelain in PBS, twice daily for four consecutive days, beginning 1 day prior to OVA aerosol challenge. Airway reactivity and methacholine sensitivity, bronchoalveolar lavage (BAL) cellular differential, Th2 cytokines IL-5 and IL-13, and lung histology were compared between treatment groups. Oral bromelain-treatment of AAD mice demonstrated therapeutic efficacy as evidenced by decreased methacholine sensitivity (P ≤ 0.01), reduction in BAL eosinophils (P ≤ 0.02) and IL-13 concentrations (P ≤ 0.04) as compared with PBS controls. In addition, oral bromelain significantly reduced BAL CD19+ B cells (P ≤ 0.0001) and CD8+ T cells (P ≤ 0.0001) in AAD mice when compared with controls. These results suggest that oral treatment with bromelain had a beneficial therapeutic effect in this murine model of asthma and bromelain may also be effective in human conditions
    corecore