29 research outputs found

    Geometric modeling and analysis of dynamic resource allocation mechanisms

    Get PDF
    Thesis (Ph.D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2001.Includes bibliographical references (p. 159-163).The major contribution of this thesis is the investigation of a specific resource allocation optimization problem whose solution has both practical application as well as theoretical interest. It is presented as a specific case of a more general modeling framework we put forth. The underlying question asks how to partition a given resource into a fixed number of parts such that the elements of the resulting partition can be scheduled among a set of user requests to minimize the worst case difference between the schedule and the requests. This particular allocation problem has not been studied before. The general problem is difficult in part because the evaluation of the objective problem is a difficult task by itself. We present a novel algorithm for its exact solution in a constrained setting and discussion of the unconstrained setting in, followed by a number of practical applications of these solutions. The solution to the constrained optimization problem is shown to provide sizable benefits in allocation efficiency in a number of contexts at a minimal implementation cost. The specific contexts we look at include communication over a shared channel, allocation of many small channels to a few users and package delivery from a central office to a number of satellite offices. We also present a set of new fairness results for auction-based allocation mechanisms and show how these mechanisms also fall within our modeling framework. Specifically, we look at using auctions as mechanisms to allocate an indivisible shared resource fairly among a number of users. We establish that a straightforward approach as has been tried in the literature does not guarantee an fair allocation over a long time scale and provide a modified approach that does guarantee a fair allocation. We also show that by allowing users to strategize when bidding on the resource we can avoid the problem of unfairness, for some simple cases. This analysis has not been seen in existing literature. Finally, an analysis of the deterministic and stochastic stability of our class of models is presented that applies to a large subset of the models within our framework. The deterministic stability results presented establish the ultimate boundedness of the lag of deterministically stabilizable models in our framework under a wide variety of quantizer-based scheduling rules. This variety of available rules can be used to further control the behavior of the lag of a stable mechanism. We also discuss the application of existing stochastic stability theory to a large subset of the stochastic models in our framework. This is a straightforward usage of existing stability results based on verifying the satisfaction of a stochastic drift condition.by Matthew Secor.Ph.D

    Evaluation of a Year-Round Grazing System: Winter Progress Report

    Get PDF
    The winter component of a year-round grazing system involving grazing of corn crop residues followed by grazing stockpiled grass legume forages was compared at the McNay Research Farm with that of the winter component of a minimal land system that maintained cows in drylot,. In the summer of 1995, two cuttings of hay were harvested from two 15-acre fields containing “Johnston” endophyte-free tall fescue and red clover, and two cuttings of hay were taken from two 15-acre fields of smooth bromegrass and red clover. Hay yields were 4,236 and 4,600 pounds of dry matter per acre for the tall fescue--red clover and smooth bromegrass--red clover. Following grain harvest four 7.5-acre fields containing corn crop residue were stocked with cows at midgestation at an allowance of 1.5 acres per cow. Forage yields at the initiation of corn crop grazing were 3,766pounds of dry matter per acre for corn crop residue, 1,748 pounds for tall fescue--red clover, and 1,.880 pounds for smooth bromegrass--red clover. Corn crop residues and stockpiled forages were grazed in a strip stocking system. For comparison, 20 cows were placed in two drylots simultaneously to the initiation of corn crop grazing where they remained throughout the winter and spring grazing seasons. Cows maintained in drylot or grazing corn crop residue and stockpiled forages were supplemented with hay as large round bales to maintain a body condition score of five. No seasonal differences in body weight and body condition were observed between grazing cows or cows maintained in drylot, but grazing cows required 87% and 84% less harvested hay than cows in drylot during the winter and spring respectively. Because less hay was needed to maintain grazing cows, an excess of 11,905 and 12,803 pounds of hay dry matter per cow remained in the year-round grazing system. During corn crop grazing, organic matter yield decreased at 27.3 pounds of organic matter per day from grazed areas of corn crop residue. Organic matter losses due to weathering were 9.4, 12.9, and 15.8 pounds per day in corn crop residue, tall fescue-red clover and smooth bromegrass-red clover. Organic matter losses from grazed and ungrazed areas during stockpiled grazing were 7.3 and 6.9 for tall fescue--red clover and 2.1, 2.9 for smooth bromegrass--red clover

    Evaluation of a Year-Round Grazing System: Summer Cow-Calf Progress Report

    Get PDF
    A comparison was made between two different summer grazing systems. One system was the summer component of a year-round grazing system, involving the rotational stocking of smooth bromegrass--orchardgrass--birdsfoot trefoil pastures and winter stockpiles pastures with cowcalf pairs co-grazing with stocker yearlings at .75 animal units per acre. That system was compared with a minimal land system involving the rotational stocking of smooth bromegrass--orchardgrass-- birdsfoot trefoil summer pastures with cow-calf pairs grazing at .64 animal units per acre and hay removal from 25% of the pasture. Stocker yearlings or hay removal were used as management tools to remove excess forage and optimize forage quality. Hay was removed once from three fourths of the winter stockpiled pastures and one fourth of the allocated summer pastures. Cow-calf pairs grazing in the year-round system utilized on fourth of the winter stockpile pastures due to lack of forage, whereas cow-calf pairs grazing with hay removal were supplemented with harvested hay for two weeks during the summer. Grazing system did not affect cow body weight, condition score, or daily calf weight gain. Growing animal production per acre was affected by grazing system, with the minimal land system having a higher production level

    Assessment of Critical Habitats for Recovering the Chesapeake Bay Atlantic Sturgeon Distinct Population Segment

    Get PDF
    The states of Virginia and Maryland along with Virginia Commonwealth University (VCU), Virginia Institute of Marine Science (VIMS) and University of Maryland Center for Environmental Science (UMCES) partnered to assess critical habitat for recovering the Chesapeake Bay Atlantic sturgeon (Acipenser oxyrinchus oxyrinchus) distinct population segment. The primary objectives were to assess reproductive habitat in the James River, nursery habitat in the James and York Rivers and the degree of dependence of those populations to habitat in the Chesapeake Bay

    Identifying Important Juvenile Dusky Shark Habitat in the Northwest Atlantic Ocean Using Acoustic Telemetry and Spatial Modeling

    Get PDF
    Highly mobile species can be challenging for fisheries management and conservation due to large home ranges combined with dependence on discrete habitat areas where they can be easily targeted or vulnerable to anthropogenic disturbances. Management of the Dusky Shark Carcharhinus obscurus in the northwest Atlantic Ocean has been particularly challenging due to the species\u27 inherent vulnerability to overfishing and poorly understood habitat associations. To better understand habitat associations and seasonal distributions, we combined telemetry and remotely sensed environmental data to spatially model juvenile Dusky Shark presence probability in the northwest Atlantic Ocean. To accomplish this, 22 juvenile Dusky Sharks (107-220 cm TL) that were tagged with acoustic transmitters at different locations within the U.S. Middle Atlantic Bight region were tracked through networked arrays of acoustic receivers. Tag detections were summarized as daily presence records, and data describing environmental conditions, including depth, chlorophyll-a concentration, salinity, and sea surface temperature, were extracted at detection locations. These data were used in boosted regression tree models to predict juvenile Dusky Shark presence probability based on environmental parameters during fall 2017 and summer 2018. Telemetry observations and modeled presence probability showed consistent associations with temperatures between 16 degrees C and 26 degrees C and chlorophyll-a concentrations between 2 and 7 mg/m(3), which were associated with seasonal migration timing and monthly spatial distributions. Dusky Shark tag detections and predicted distributions during summer and early fall overlapped areas in the Middle Atlantic Bight that were affected by fisheries and potential offshore energy development. Our methodology provides a framework for assessing climate change effects on distribution

    Population Connectivity of Pelagic Megafauna in the Cuba-Mexico-United States Triangle

    Get PDF
    The timing and extent of international crossings by billfishes, tunas, and sharks in the Cuba-Mexico-United States (U.S.) triangle was investigated using electronic tagging data from eight species that resulted in \u3e22,000 tracking days. Transnational movements of these highly mobile marine predators were pronounced with varying levels of bi- or tri-national population connectivity displayed by each species. Billfishes and tunas moved throughout the Gulf of Mexico and all species investigated (blue marlin, white marlin, Atlantic bluefin tuna, yellowfin tuna) frequently crossed international boundaries and entered the territorial waters of Cuba and/or Mexico. Certain sharks (tiger shark, scalloped hammerhead) displayed prolonged periods of residency in U.S. waters with more limited displacements, while whale sharks and to a lesser degree shortfin mako moved through multiple jurisdictions. The spatial extent of associated movements was generally associated with their differential use of coastal and open ocean pelagic ecosystems. Species with the majority of daily positions in oceanic waters off the continental shelf showed the greatest tendency for transnational movements and typically traveled farther from initial tagging locations. Several species converged on a common seasonal movement pattern between territorial waters of the U.S. (summer) and Mexico (winter)

    Digital Signal Processing Research Program

    Get PDF
    Contains table of contents for Section 2, an introduction, reports on twenty research projects and a list of publications.Lockheed Sanders, Inc. Contract BZ4962U.S. Army Research Laboratory Grant QK-8819U.S. Navy - Office of Naval Research Grant N00014-93-1-0686National Science Foundation Grant MIP 95-02885U.S. Navy - Office of Naval Research Grant N00014-95-1-0834U.S. Navy - Office of Naval Research Grant N00014-96-1-0930U.S. Navy - Office of Naval Research Grant N00014-95-1-0362National Defense Science and Engineering FellowshipU.S. Air Force - Office of Scientific Research Grant F49620-96-1-0072National Science Foundation Graduate Research Fellowship Grant MIP 95-02885Lockheed Sanders, Inc. Grant N00014-93-1-0686National Science Foundation Graduate FellowshipU.S. Army Research Laboratory/ARL Advanced Sensors Federated Lab Program Contract DAAL01-96-2-000

    Digital Signal Processing Research Program

    Get PDF
    Contains table of contents for Section 2, an introduction, reports on twenty-two research projects and a list of publications.Sanders, a Lockheed-Martin Corporation Contract BZ4962U.S. Army Research Laboratory Contract DAAL01-96-2-0001U.S. Navy - Office of Naval Research Grant N00014-93-1-0686National Science Foundation Grant MIP 95-02885U.S. Navy - Office of Naval Research Grant N00014-96-1-0930National Defense Science and Engineering FellowshipU.S. Air Force - Office of Scientific Research Grant F49620-96-1-0072U.S. Navy - Office of Naval Research Grant N00014-95-1-0362National Science Foundation Graduate Research FellowshipAT&T Bell Laboratories Graduate Research FellowshipU.S. Army Research Laboratory Contract DAAL01-96-2-0002National Science Foundation Graduate FellowshipU.S. Army Research Laboratory/Advanced Sensors Federated Lab Program Contract DAAL01-96-2-000

    Digital Signal Processing Research Program

    Get PDF
    Contains table of contents for Section 2, an introduction, reports on twenty-one research projects and a list of publications.U.S. Navy - Office of Naval Research Grant N00014-93-1-0686Lockheed Sanders, Inc. Contract P.O. BY5561U.S. Air Force - Office of Scientific Research Grant AFOSR 91-0034National Science Foundation Grant MIP 95-02885U.S. Navy - Office of Naval Research Grant N00014-95-1-0834MIT-WHOI Joint Graduate Program in Oceanographic EngineeringAT&T Laboratories Doctoral Support ProgramDefense Advanced Research Projects Agency/U.S. Navy - Office of Naval Research Grant N00014-89-J-1489Lockheed Sanders/U.S. Navy - Office of Naval Research Grant N00014-91-C-0125U.S. Navy - Office of Naval Research Grant N00014-89-J-1489National Science Foundation Grant MIP 95-02885Defense Advanced Research Projects Agency/U.S. Navy Contract DAAH04-95-1-0473U.S. Navy - Office of Naval Research Grant N00014-91-J-1628University of California/Scripps Institute of Oceanography Contract 1003-73-5
    corecore