2 research outputs found

    Immunosilencing peptides by stereochemical inversion and sequence reversal: retro-D-peptides

    Get PDF
    Peptides are experiencing a new era in medical research, finding applications ranging from therapeutics to vaccines. In spite of the promising properties of peptide pharmaceuticals, their development continues to be hindered by three weaknesses intrinsic to their structure, namely protease sensitivity, clearance through the kidneys, and immune system activation. Here we report on two retro-D-peptides (H2N-hrpyiah-CONH2 and H2N-pwvpswmpprht-CONH2), which are protease-resistant and retain the original BBB shuttle activity of the parent peptide but are much less immunogenic than the parent peptide. Hence, we envisage that retro-D-peptides, which display a similar topological arrangement as their parent peptides, will expand drug design and help to overcome factors that lead to the failure of peptide pharmaceuticals in pre- and clinical trials. Furthermore, we reveal requirements to avoid or elicit specific humoral responses to therapeutic peptides, which might have a strong impact in both vaccine design and peptide therapeutic agents

    Toward a novel drug to target the EGF-EGFR interaction: design of metabolically stable bicyclic peptides

    Get PDF
    In cancer, proliferation of malignant cells is driven by overactivation of growth-signalling mechanisms, such as the epidermal growth factor receptor (EGFR) pathway. Despite its therapeutic relevance, the EGF-EGFR interaction has remained elusive to inhibition by synthetic molecules, mostly as a result of its large size and lack of binding pockets and cavities. Designed peptides, featuring cyclic motifs and other structural constraints, have the potential to modulate such challenging protein-protein interactions (PPIs). Herein, we present the structure-based design of a series of bicyclic constrained peptides that mimic an interface domain of EGFR and inhibit the EGF-EGFR interaction by targeting the smaller partner (i.e., EGF). This design process was guided by the integrated use of in silico methods and biophysical techniques, such as NMR spectroscopy and surface acoustic wave. The best analogues were able to reduce selectively the viability of EGFR+ human cancer cells. In addition to their efficacy, these bicyclic peptides are endowed with exceptional stability and metabolic resistance-two features that make them suitable candidates for in vivo applications
    corecore