570 research outputs found

    Maternal obesity has little effect on the immediate offspring but impacts on the next generation

    Get PDF
    Maternal obesity during pregnancy has been linked to an increased risk of obesity and cardiometabolic disease in the offspring, a phenomenon attributed to developmental programming. Programming effects may be transmissible across generations through both maternal and paternal inheritance, although the mechanisms remain unclear. Using a mouse model, we explored the effects of moderate maternal diet-induced obesity (DIO) on weight gain and glucose-insulin homeostasis in first-generation (F1) and second-generation offspring. DIO was associated with insulin resistance, hyperglycemia and dyslipidemia before pregnancy. Birth weight was reduced in female offspring of DIO mothers (by 6%, P = .039), and DIO offspring were heavier than controls at weaning (males by 47%, females by 27%), however there were no differences in glucose tolerance, plasma lipids, or hepatic gene expression at 6 months. Despite the relative lack of effects in the F1, we found clear fetal growth restriction and persistent metabolic changes in otherwise unmanipulated second-generation offspring with effects on birth weight, insulin levels, and hepatic gene expression that were transmitted through both maternal and paternal lines. This suggests that the consequences of the current dietary obesity epidemic may also have an impact on the descendants of obese individuals, even when the phenotype of the F1 appears largely unaffected

    Exclusion of the Locus for Autosomal Recessive Pseudohypoaldosteronism Type 1 from the Mineralocorticoid Receptor Gene Region on Human Chromosome 4q by Linkage Analysis.

    Get PDF
    Pseudohypoaldosteronism type 1 (PHA1) is an uncommon inherited disorder characterized by salt-wasting in infancy arising from target organ unresponsiveness to mineralocorticoids. Clinical expression of the disease varies from severely affected infants who may die to apparently asymptomatic individuals. Inheritance is Mendelian and may be either autosomal dominant or autosomal recessive. A defect in the mineralocorticoid receptor has been implicated as a likely cause of PHA1. The gene for human mineralocorticoid receptor (MLR) has been cloned and physically mapped to human chromosome 4q31.1-31.2. The etiological role of MLR in autosomal recessive PHA1 was investigated by performing linkage analysis between PHA1 and three simple sequence length polymorphisms (D4S192, D4S1548, and D4S413) on chromosome 4q in 10 consanguineous families. Linkage analysis was carried out assuming autosomal recessive inheritance with full penetrance and zero phenocopy rate using the MLINK program for two-point analysis and the HOMOZ program for multipoint analysis. Lod scores of less than -2 were obtained over the whole region from D4S192 to D4S413 encompassing MLR. This provdes evidence against MLR as the site of mutations causing PHA1 in the majority of autosomal recessive families

    Prenatal dexamethasone ‘programmes’ hypotension, but stress-induced hypertension in adult offspring

    Get PDF
    Low birth weight in humans is predictive of hypertension in adult life. Although the mechanisms underlying this link remain unknown, fetal overexposure to glucocorticoids has been implicated. We previously showed that prenatal dexamethasone (DEX) exposure in the rat lowers birth weight and programmes adult hypertension. The current study aimed to further investigate the nature of this hypertension and to elucidate its origins. Unlike previous studies, we assessed offspring blood pressure (BP) with radiotelemetry, which is unaffected by stress artefacts of measurement. We show that prenatal DEX during the last week of pregnancy results in offspring of low birth weight (14% reduction) that have lower basal BP in adulthood (∼4–8 mmHg lower); with the commonly expected hypertensive phenotype only being noted when these offspring are subjected to even mild disturbance or a more severe stressor (up to 30 mmHg higher than controls). Moreover, DEX-treated offspring sustain their stress-induced hypertension for longer. Promotion of systemic catecholamine release (amphetamine) induced a significantly greater rise of BP in the DEX animals (77% increase) over that observed in the vehicle controls. Additionally, we demonstrate that the isolated mesenteric vasculature of DEX-treated offspring display greater sensitivity to noradrenaline and other vasoconstrictors. We therefore conclude that altered sympathetic responses mediate the stress-induced hypertension associated with prenatal DEX programming

    Distinct ontogeny of glucocorticoid and mineralocorticoid receptor and 11 beta-hydroxysteroid dehydrogenase types I and II mRNAs in the fetal rat brain suggest a complex control of glucocorticoid actions

    Get PDF
    Glucocorticoids (GCs) act via intracellular mineralocorticoid (MR) and glucocorticoid receptors (GR). However, it has recently been recognized that GC access to receptors is determined by the presence of tissue-specific 11�-hydroxysteroid dehydrogenases (11�-HSDs) that catalyze the interconversion of active corticosterone and inert 11-dehydrocorticosterone. 11�-HSD type 1 (11�-HSD1) is a bidirectional enzyme in vitro that acts predominantly as a reductase (regenerating corticosterone) in intact neurons. In contrast, 11�-HSD type 2 (11�-HSD2) is a higher affinity exclusive dehydrogenase that excludes GCs from MR in the kidney, producing aldosteroneselectivity in vivo. We have examined the ontogeny of 11�-HSD mRNAs and enzyme activity during prenatal brain development and correlated this with GR and MR mRNA development. These data reveal that (1) 11�-HSD2 mRNA is highly expressed in al

    11 beta-hydroxysteroid dehydrogenase in cultured hippocampal cells reactivates inert 11-dehydrocorticosterone, potentiating neurotoxicity

    Get PDF
    11 beta-Hydroxysteroid dehydrogenase (11 beta-HSD) catalyzes the conversion of the glucocorticoid corticosterone (cortisol in humans) to inert 11-dehydrocorticosterone (cortisone). 11 beta-HSD activity is present in the hippocampus, where it is induced by glucocorticoids and stress in vivo, prompting suggestions that the enzyme may attenuate the deleterious effects of chronic glucocorticoid excess on neuronal function and survival. Two isoforms exist: 11 beta-HSD1, a bidirectional NADPH-dependent enzyme, and 11 beta-HSD2, an NAD(+)- dependent exclusive 11 beta-dehydrogenase (corticosterone-inactivating enzyme). In this study, 11 beta-HSD1 activity and mRNA synthesis were demonstrated in primary fetal hippocampal cell cultures. Unexpectedly, the reaction direction in intact hippocampal cells was 11 beta- reduction (reactivation of inert 11-dehydrocorticosterone), although homogenization revealed that the enzyme was capable of 11 beta- dehydrogenation when removed from its normal cellular context. Dexamethasone (10(-7) M) increased 11 beta-HSD activity in homogenates of hippocampal cultures (102% increase). In intact hippocampal cells, dexamethasone induced 11 beta reductase, not dehydrogenase. To determine the functional relevance of hippocampal 11 beta-reductase, glucocorticoid potentiation of kainic acid neurotoxicity was examined. Pretreatment of hippocampal cells with corticosterone reduced survival on kainate exposure. Hippocampal cell 11 beta-HSD activity was potently inhibited by carbenoxolone. Carbenoxolone had no effect on cell survival after kainate alone and did not alter the effect of corticosterone. 11-Dehydrocorticosterone also potentiated kainate neurotoxicity; this effect was lost, however, if 11 beta-HSD was inhibited with carbenoxolone. Thus, hippocampal 11 beta-HSD seems to be a functional 11 beta-reductase in intact cells. Measures to attenuate hippocampal 11 beta-reductase may reduce neuronal vulnerability to glucocorticoid toxicity.</jats:p

    Role of the flocculus in mediating vestibular nucleus neuron plasticity during vestibular compensation in the rat

    Get PDF
    We investigated the role of the cerebellar flocculus in mediating the adaptive changes that occur in the intrinsic properties of brainstem medial vestibular nucleus (MVN) neurons during vestibular compensation. Ipsi-lesional, but not contra-lesional, flocculectomy prevented the compensatory increase in intrinsic excitability (CIE) that normally occurs in the de-afferented MVN neurons within 4 h after unilateral labyrinthectomy (UL). Flocculectomy did not, however, prevent the down-regulation of efficacy of GABA receptors that also occurs in these neurons after UL, indicating that these responses of the MVN neurons to deafferentation are discrete, parallel processes. CIE was also abolished by intra-floccular microinjection of the metabotropic glutamate receptor (mGluR) antagonist AIDA, and the protein kinase C inhibitor bisindolymaleimide I (BIS-I). The serene-threonine kinase inhibitor H-7 had no effect when microinjected at the time of de-afferentation, but abolished CIE if microinjected 2 h later. These cellular effects are in line with the recently reported retardatory effects of BIS-I and H-7 on behavioural recovery after UL. They demonstrate that the increase in intrinsic excitability in MVN neurons during vestibular compensation is cerebellum dependent, and requires mGluR activation and protein phosphorylation in cerebellar cortex. Furthermore, microinjection of the glucocorticoid receptor (GR) antagonist RU38486 into the ipsi-lesional flocculus also abolished CIE in MVN neurons. Thus an important site for glucocorticoids in facilitating vestibular compensation is within the cerebellar cortex. These observations ascribe functional significance to the high levels of GR and 11-β-HSD Type 1 expression in cerebellum

    Decreased glutathione biosynthesis contributes to EGFR T790M-driven erlotinib resistance in non-small cell lung cancer

    Get PDF
    Epidermal growth factor receptor (EGFR) inhibitors such as erlotinib are novel effective agents in the treatment of EGFR-driven lung cancer, but their clinical impact is often impaired by acquired drug resistance through the secondary T790M EGFR mutation. To overcome this problem, we analysed the metabonomic differences between two independent pairs of erlotinib-sensitive/resistant cells and discovered that glutathione (GSH) levels were significantly reduced in T790M EGFR cells. We also found that increasing GSH levels in erlotinib-resistant cells re-sensitised them, whereas reducing GSH levels in erlotinib-sensitive cells made them resistant. Decreased transcription of the GSH-synthesising enzymes (GCLC and GSS) due to the inhibition of NRF2 was responsible for low GSH levels in resistant cells that was directly linked to the T790M mutation. T790M EGFR clinical samples also showed decreased expression of these key enzymes; increasing intra-tumoural GSH levels with a small-molecule GST inhibitor re-sensitised resistant tumours to erlotinib in mice. Thus, we identified a new resistance pathway controlled by EGFR T790M and a therapeutic strategy to tackle this problem in the clinic
    corecore