76 research outputs found

    Effects of aleglitazar, a balanced dual peroxisome proliferator-activated receptor α/γ agonist on glycemic and lipid parameters in a primate model of the metabolic syndrome

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Glycemic control and management of dyslipidemia to reduce cardiovascular risk are major therapeutic goals in individuals with type 2 diabetes mellitus (T2DM). This study was performed to evaluate the effects of aleglitazar, a balanced dual peroxisome proliferator-activated receptor α/γ (PPARα/γ) agonist, on both lipid and glycemic parameters in obese, hypertriglyceridemic, insulin-resistant rhesus monkeys.</p> <p>Methods</p> <p>A 135-day efficacy study was performed in six rhesus monkeys. After a 28-day baseline assessment (vehicle only), monkeys received oral aleglitazar 0.03 mg/kg per day for 42 days, followed by a 63-day washout period. Plasma levels of markers of glycemic and lipid regulation were measured at baseline, at the end of the dosing period, and at the end of the washout period.</p> <p>Results</p> <p>Compared with baseline values, aleglitazar 0.03 mg/kg per day reduced triglyceride levels by an average of 89% (328 to 36 mg/dL; P = 0.0035 when normalized for baseline levels) and increased high-density lipoprotein cholesterol levels by 125% (46 to 102 mg/dL; P = 0.0007). Furthermore, aleglitazar reduced low-density lipoprotein cholesterol levels (41%) and increased levels of apolipoprotein A-I (17%) and A-II (17%). Aleglitazar also improved insulin sensitivity by 60% (P = 0.001). Mean body weight was reduced by 5.9% from baseline values with aleglitazar at this dose (P = 0.043).</p> <p>Conclusions</p> <p>Aleglitazar, a dual PPARα/γ agonist, has beneficial effects on both lipid and glucose parameters and may have a therapeutic role in modifying cardiovascular risk factors and improving glycemic control in patients with T2DM.</p

    Taspoglutide, a novel human once-weekly analogue of glucagon-like peptide-1, improves glucose homeostasis and body weight in the Zucker diabetic fatty rat

    No full text
    Aim: Glucagon-like peptide-1 (GLP-1) receptor agonists are a novel class of pharmacotherapy for type 2 diabetes. We investigated the effects of a novel, long-acting human GLP-1 analogue, taspoglutide, in the Zucker diabetic fatty (ZDF) rat, an animal model of type 2 diabetes. Methods: Blood glucose and plasma levels of insulin, peptide YY (PYY), glucose-dependent insulinotropic polypeptide (GIP) and triglycerides were measured during oral glucose tolerance tests (oGTT) conducted in ZDF rats treated acutely or chronically with a single long-acting dose of taspoglutide. Pioglitazone was used as a positive control in the chronic study. Postprandial glucose, body weight, glycaemic control and insulin sensitivity were assessed over 21 days in chronically treated animals. Results: Acute treatment with taspoglutide reduced glucose excursion and increased insulin response during oGTT. In chronically treated rats, glucose excursion and levels of GIP, PYY and triglycerides during oGTT on day 21 were significantly reduced. Postprandial glucose levels were significantly lower than vehicle controls by day 15. A significant reduction in body weight gain was noticed by day 8, and continued until the end of the study when body weight was approximately 7% lower in rats treated with taspoglutide compared to vehicle. Glycaemic control (increased levels of 1,5-anhydroglucitol) and insulin sensitivity (Matsuda index) were improved by taspoglutide treatment. Conclusions: Taspoglutide showed typical effects of native GLP-1, with improvement in glucose tolerance, postprandial glucose, body weight, glycaemic control and insulin sensitivity
    • …
    corecore