8 research outputs found

    TNF-dependent regulation and activation of innate immune cells are essential for host protection against cerebral tuberculosis

    Get PDF
    BACKGROUND: Tuberculosis (TB) affects one third of the global population, and TB of the central nervous system (CNS-TB) is the most severe form of tuberculosis which often associates with high mortality. The pro-inflammatory cytokine tumour necrosis factor (TNF) plays a critical role in the initial and long-term host immune protection against Mycobacterium tuberculosis (M. tuberculosis) which involves the activation of innate immune cells and structure maintenance of granulomas. However, the contribution of TNF, in particular neuron-derived TNF, in the control of cerebral M. tuberculosis infection and its protective immune responses in the CNS were not clear. METHODS: We generated neuron-specific TNF-deficient (NsTNF / ) mice and compared outcomes of disease against TNF f/f control and global TNF / mice. Mycobacterial burden in brains, lungs and spleens were compared, and cerebral pathology and cellular contributions analysed by microscopy and flow cytometry after M. tuberculosis infection. Activation of innate immune cells was measured by flow cytometry and cell function assessed by cytokine and chemokine quantification using enzyme-linked immunosorbent assay (ELISA). RESULTS: Intracerebral M. tuberculosis infection of TNF / mice rendered animals highly susceptible, accompanied by uncontrolled bacilli replication and eventual mortality. In contrast, NsTNF / mice were resistant to infection and presented with a phenotype similar to that in TNF f/f control mice. Impaired immunity in TNF / mice was associated with altered cytokine and chemokine synthesis in the brain and characterised by a reduced number of activated innate immune cells. Brain pathology reflected enhanced inflammation dominated by neutrophil influx. CONCLUSION: Our data show that neuron-derived TNF has a limited role in immune responses, but overall TNF production is necessary for protective immunity against CNS-TB

    Reactivation of M. tuberculosis Infection in Trans-Membrane Tumour Necrosis Factor Mice

    Get PDF
    Of those individuals who are infected with M. tuberculosis, 90% do not develop active disease and represents a large reservoir of M. tuberculosis with the potential for reactivation of infection. Sustained TNF expression is required for containment of persistent infection and TNF neutralization leads to tuberculosis reactivation. In this study, we investigated the contribution of soluble TNF (solTNF) and transmembrane TNF (Tm-TNF) in immune responses generated against reactivating tuberculosis. In a chemotherapy induced tuberculosis reactivation model, mice were challenged by aerosol inhalation infection with low dose M. tuberculosis for three weeks to establish infection followed chemotherapeutic treatment for six weeks, after which therapy was terminated and tuberculosis reactivation investigated. We demonstrate that complete absence of TNF results in host susceptibility to M. tuberculosis reactivation in the presence of established mycobacteria-specific adaptive immunity with mice displaying unrestricted bacilli growth and diffused granuloma structures compared to WT control mice. Interestingly, bacterial re-emergence is contained in Tm-TNF mice during the initial phases of tuberculosis reactivation, indicating that Tm-TNF sustains immune pressure as in WT mice. However, Tm-TNF mice show susceptibility to long term M. tuberculosis reactivation associated with uncontrolled influx of leukocytes in the lungs and reduced IL-12p70, IFNγ and IL-10, enlarged granuloma structures, and failure to contain mycobacterial replication relative to WT mice. In conclusion, we demonstrate that both solTNF and Tm-TNF are required for maintaining immune pressure to contain reactivating M. tuberculosis bacilli even after mycobacteria-specific immunity has been established

    Development and validation of quantitative PCR assays for HIV-associated cryptococcal meningitis in sub-Saharan Africa: a diagnostic accuracy study

    Get PDF
    Background: HIV-associated cryptococcal meningitis is the second leading cause of AIDS-related deaths, with a 10-week mortality rate of 25–30%. Fungal load assessed by colony-forming unit (CFU) counts is used as a prognostic marker and to monitor response to treatment in research studies. PCR-based assessment of fungal load could be quicker and less labour-intensive. We sought to design, optimise, and validate quantitative PCR (qPCR) assays for the detection, identification, and quantification of Cryptococcus infections in patients with cryptococcal meningitis in sub-Saharan Africa. Methods: We developed and validated species-specific qPCR assays based on DNA amplification of QSP1 (QSP1A specific to Cryptococcus neoformans, QSP1B/C specific to Cryptococcus deneoformans, and QSP1D specific to Cryptococcus gattii species) and a pan-Cryptococcus assay based on a multicopy 28S rRNA gene. This was a longitudinal study that validated the designed assays on cerebrospinal fluid (CSF) of 209 patients with cryptococcal meningitis at baseline (day 0) and during anti-fungal therapy (day 7 and day 14), from the AMBITION-cm trial in Botswana and Malawi (2018–21). Eligible patients were aged 18 years or older and presenting with a first case of cryptococcal meningitis. Findings: When compared with quantitative cryptococcal culture as the reference, the sensitivity of the 28S rRNA was 98·2% (95% CI 95·1–99·5) and of the QSP1 assay was 90·4% (85·2–94·0) in CSF at day 0. Quantification of the fungal load with QSP1 and 28S rRNA qPCR correlated with quantitative cryptococcal culture (R2=0·73 and R2=0·78, respectively). Both Botswana and Malawi had a predominant C neoformans prevalence of 67% (95% CI 55–75) and 68% (57–73), respectively, and lower C gattii rates of 21% (14–31) and 8% (4–14), respectively. We identified ten patients that, after 14 days of treatment, harboured viable but non-culturable yeasts based on QSP1 RNA detection (without any positive CFU in CSF culture). Interpretation: QSP1 and 28S rRNA assays are useful in identifying Cryptococcus species. qPCR results correlate well with baseline quantitative cryptococcal culture and show a similar decline in fungal load during induction therapy. These assays could be a faster alternative to quantitative cryptococcal culture to determine fungal load clearance. The clinical implications of the possible detection of viable but non-culturable cells in CSF during induction therapy remain unclear. Funding: European and Developing Countries Clinical Trials Partnership; Swedish International Development Cooperation Agency; Wellcome Trust/UK Medical Research Council/UKAID Joint Global Health Trials; and UK National Institute for Health Research

    Development and validation of quantitative PCR assays for HIV-associated cryptococcal meningitis in sub-Saharan Africa: a diagnostic accuracy study

    Get PDF
    Background: HIV-associated cryptococcal meningitis is the second leading cause of AIDS-related deaths, with a 10-week mortality rate of 25–30%. Fungal load assessed by colony-forming unit (CFU) counts is used as a prognostic marker and to monitor response to treatment in research studies. PCR-based assessment of fungal load could be quicker and less labour-intensive. We sought to design, optimise, and validate quantitative PCR (qPCR) assays for the detection, identification, and quantification of Cryptococcus infections in patients with cryptococcal meningitis in sub-Saharan Africa. Methods: We developed and validated species-specific qPCR assays based on DNA amplification of QSP1 (QSP1A specific to Cryptococcus neoformans, QSP1B/C specific to Cryptococcus deneoformans, and QSP1D specific to Cryptococcus gattii species) and a pan-Cryptococcus assay based on a multicopy 28S rRNA gene. This was a longitudinal study that validated the designed assays on cerebrospinal fluid (CSF) of 209 patients with cryptococcal meningitis at baseline (day 0) and during anti-fungal therapy (day 7 and day 14), from the AMBITION-cm trial in Botswana and Malawi (2018–21). Eligible patients were aged 18 years or older and presenting with a first case of cryptococcal meningitis. Findings: When compared with quantitative cryptococcal culture as the reference, the sensitivity of the 28S rRNA was 98·2% (95% CI 95·1–99·5) and of the QSP1 assay was 90·4% (85·2–94·0) in CSF at day 0. Quantification of the fungal load with QSP1 and 28S rRNA qPCR correlated with quantitative cryptococcal culture (R2=0·73 and R2=0·78, respectively). Both Botswana and Malawi had a predominant C neoformans prevalence of 67% (95% CI 55–75) and 68% (57–73), respectively, and lower C gattii rates of 21% (14–31) and 8% (4–14), respectively. We identified ten patients that, after 14 days of treatment, harboured viable but non-culturable yeasts based on QSP1 RNA detection (without any positive CFU in CSF culture). Interpretation: QSP1 and 28S rRNA assays are useful in identifying Cryptococcus species. qPCR results correlate well with baseline quantitative cryptococcal culture and show a similar decline in fungal load during induction therapy. These assays could be a faster alternative to quantitative cryptococcal culture to determine fungal load clearance. The clinical implications of the possible detection of viable but non-culturable cells in CSF during induction therapy remain unclear

    Development and validation of quantitative PCR assays for HIV-associated cryptococcal meningitis in sub-Saharan Africa: a diagnostic accuracy study

    No full text
    Background: HIV-associated cryptococcal meningitis is the second leading cause of AIDS-related deaths, with a 10-week mortality rate of 25–30%. Fungal load assessed by colony-forming unit (CFU) counts is used as a prognostic marker and to monitor response to treatment in research studies. PCR-based assessment of fungal load could be quicker and less labour-intensive. We sought to design, optimise, and validate quantitative PCR (qPCR) assays for the detection, identification, and quantification of Cryptococcus infections in patients with cryptococcal meningitis in sub-Saharan Africa. Methods: We developed and validated species-specific qPCR assays based on DNA amplification of QSP1 (QSP1A specific to Cryptococcus neoformans, QSP1B/C specific to Cryptococcus deneoformans, and QSP1D specific to Cryptococcus gattii species) and a pan-Cryptococcus assay based on a multicopy 28S rRNA gene. This was a longitudinal study that validated the designed assays on cerebrospinal fluid (CSF) of 209 patients with cryptococcal meningitis at baseline (day 0) and during anti-fungal therapy (day 7 and day 14), from the AMBITION-cm trial in Botswana and Malawi (2018–21). Eligible patients were aged 18 years or older and presenting with a first case of cryptococcal meningitis. Findings: When compared with quantitative cryptococcal culture as the reference, the sensitivity of the 28S rRNA was 98·2% (95% CI 95·1–99·5) and of the QSP1 assay was 90·4% (85·2–94·0) in CSF at day 0. Quantification of the fungal load with QSP1 and 28S rRNA qPCR correlated with quantitative cryptococcal culture (R2=0·73 and R2=0·78, respectively). Both Botswana and Malawi had a predominant C neoformans prevalence of 67% (95% CI 55–75) and 68% (57–73), respectively, and lower C gattii rates of 21% (14–31) and 8% (4–14), respectively. We identified ten patients that, after 14 days of treatment, harboured viable but non-culturable yeasts based on QSP1 RNA detection (without any positive CFU in CSF culture). Interpretation: QSP1 and 28S rRNA assays are useful in identifying Cryptococcus species. qPCR results correlate well with baseline quantitative cryptococcal culture and show a similar decline in fungal load during induction therapy. These assays could be a faster alternative to quantitative cryptococcal culture to determine fungal load clearance. The clinical implications of the possible detection of viable but non-culturable cells in CSF during induction therapy remain unclear. Funding: European and Developing Countries Clinical Trials Partnership; Swedish International Development Cooperation Agency; Wellcome Trust/UK Medical Research Council/UKAID Joint Global Health Trials; and UK National Institute for Health Research
    corecore