50 research outputs found

    Sex and gender differences in developmental programming of metabolism.

    Get PDF
    BACKGROUND: The early life environment experienced by an individual in utero and during the neonatal period is a major factor in shaping later life disease risk-including susceptibility to develop obesity, diabetes, and cardiovascular disease. The incidence of metabolic disease is different between males and females. How the early life environment may underlie these sex differences is an area of active investigation. SCOPE OF REVIEW: The purpose of this review is to summarize our current understanding of how the early life environment influences metabolic disease risk in a sex specific manner. We also discuss the possible mechanisms responsible for mediating these sexually dimorphic effects and highlight the results of recent intervention studies in animal models. MAJOR CONCLUSIONS: Exposure to states of both under- and over-nutrition during early life predisposes both sexes to develop metabolic disease. Females seem particularly susceptible to develop increased adiposity and disrupted glucose homeostasis as a result of exposure to in utero undernutrition or high sugar environments, respectively. The male placenta is particularly vulnerable to damage by adverse nutritional states and this may underlie some of the metabolic phenotypes observed in adulthood. More studies investigating both sexes are needed to understand how changes to the early life environment impact differently on the long-term health of male and female individuals.Wellcome Trust, MRC, NIH, Foundation for Prader-Willi Research, The Saban Research Institut

    A Transcriptomic Signature of the Hypothalamic Response to Fasting and BDNF Deficiency in Prader-Willi Syndrome.

    Get PDF
    Transcriptional analysis of brain tissue from people with molecularly defined causes of obesity may highlight disease mechanisms and therapeutic targets. We performed RNA sequencing of hypothalamus from individuals with Prader-Willi syndrome (PWS), a genetic obesity syndrome characterized by severe hyperphagia. We found that upregulated genes overlap with the transcriptome of mouse Agrp neurons that signal hunger, while downregulated genes overlap with the expression profile of Pomc neurons activated by feeding. Downregulated genes are expressed mainly in neuronal cells and contribute to neurogenesis, neurotransmitter release, and synaptic plasticity, while upregulated, predominantly microglial genes are involved in inflammatory responses. This transcriptional signature may be mediated by reduced brain-derived neurotrophic factor expression. Additionally, we implicate disruption of alternative splicing as a potential molecular mechanism underlying neuronal dysfunction in PWS. Transcriptomic analysis of the human hypothalamus may identify neural mechanisms involved in energy homeostasis and potential therapeutic targets for weight loss

    Development of the Hypothalamic Melanocortin System

    Get PDF
    The melanocortin system is a critical component of the forebrain and hindbrain regulatory systems involved in energy balance. This system is composed of pro-opiomelanocortin (POMC) neurons that act, in part, through the melanocortin-4 receptor (MC4R). Although the importance of the melanocortin system in controlling feeding has been established for two decades, the understanding of the developmental substrates underlying POMC and MC4R neuron development and function has just begun to emerge. The formation of the melanocortin system involves several discrete developmental steps that include the birth and fate specification of POMC- and MC4R-containing neurons and the extension and guidance of POMC axons to their MC4R-expressing target nuclei. Each of these developmental processes appears to require specific sets of genes and developmental cues that include perinatal hormones. Recent evidence has also highlighted the importance of perinatal nutrition in controlling the ultimate architecture of the melanocortin system

    Involvement of Amylin and Leptin in the Development of Projections from the Area Postrema to the Nucleus of the Solitary Tract

    No full text
    The area postrema (AP) and the nucleus of the solitary tract (NTS) are important hindbrain centers involved in the control of energy homeostasis. The AP mediates the anorectic action and the inhibitory effect on gastric emptying induced by the pancreatic hormone amylin. Amylin’s target cells in the AP project to the NTS, an integrative relay center for enteroceptive signals. Perinatal hormonal and metabolic factors influence brain development. A postnatal surge of the adipocyte-derived hormone leptin represents a developmental signal for the maturation of projections between hypothalamic nuclei controlling energy balance. Amylin appears to promote neurogenesis in the AP in adult rats. Here, we examined whether amylin and leptin are required for the development of projections from the AP to the NTS in postnatal and adult mice by conducting neuronal tracing studies with DiI in amylin- (IAPP−/−) and leptin-deficient (ob/ob) mice. Compared to wild-type littermates, postnatal (P10) and adult (P60) IAPP−/− mice showed a significantly reduced density of AP-NTS projections. While AP projections were also reduced in postnatal (P14) ob/ob mice, AP-NTS fiber density did not differ between adult ob/ob and wild-type animals. Our findings suggest a crucial function of amylin for the maturation of neuronal brainstem pathways controlling energy balance and gastrointestinal function. The impaired postnatal development of neuronal AP-NTS projections in ob/ob mice appears to be compensated in this experimental model during later brain maturation. It remains to be elucidated whether an amylin- and leptin-dependent modulation in neuronal development translates into altered AP/NTS-mediated functions

    Maternal obesity-induced endoplasmic reticulum stress causes metabolic alterations and abnormal hypothalamic development in the offspring.

    No full text
    The steady increase in the prevalence of obesity and associated type II diabetes mellitus is a major health concern, particularly among children. Maternal obesity represents a risk factor that contributes to metabolic perturbations in the offspring. Endoplasmic reticulum (ER) stress has emerged as a critical mechanism involved in leptin resistance and type 2 diabetes in adult individuals. Here, we used a mouse model of maternal obesity to investigate the importance of early life ER stress in the nutritional programming of this metabolic disease. Offspring of obese dams developed glucose intolerance and displayed increased body weight, adiposity, and food intake. Moreover, maternal obesity disrupted the development of melanocortin circuits associated with neonatal hyperleptinemia and leptin resistance. ER stress-related genes were up-regulated in the hypothalamus of neonates born to obese mothers. Neonatal treatment with the ER stress-relieving drug tauroursodeoxycholic acid improved metabolic and neurodevelopmental deficits and reversed leptin resistance in the offspring of obese dams

    Leptin Controls Parasympathetic Wiring of the Pancreas during Embryonic Life

    Get PDF
    The autonomic nervous system plays a critical role in glucose metabolism through both its sympathetic and parasympathetic branches, but the mechanisms that underlie the development of the autonomic innervation of the pancreas remain poorly understood. Here, we report that cholinergic innervation of pancreatic islets develops during mid-gestation under the influence of leptin. Leptin-deficient mice display a greater cholinergic innervation of pancreatic islets beginning in embryonic life, and this increase persists into adulthood. Remarkably, a single intracerebroventricular injection of leptin in embryos caused a permanent reduction in parasympathetic innervation of pancreatic β cells and long-term impairments in glucose homeostasis. These developmental effects of leptin involve a direct inhibitory effect on the outgrowth of preganglionic axons from the hindbrain. These studies reveal an unanticipated regulatory role of leptin on the parasympathetic nervous system during embryonic development and may have important implications for our understanding of the early mechanisms that contribute to diabetes

    Nutritional and developmental programming effects of insulin.

    No full text
    The discovery of insulin in 1921 was a major breakthrough in medicine and for therapy in patients with diabetes. The dramatic rise in the prevalence of overweight and obesity has been tightly linked to an increased prevalence of gestational diabetes mellitus (GDM), which poses major health concerns. Babies born to GDM mothers are more likely to develop obesity, type 2 diabetes and cardiovascular disease later in life. Evidence accumulated during the past two decades has revealed that high levels insulin, such as those observed during GDM, can have a widespread effect on the development and function of a variety of organs. This review summarises our current knowledge on the role of insulin in the placenta, cardiovascular system and brain during critical periods of development, as well as how it can contribute to lifelong metabolic regulation. We also discuss possible intervention strategies to ameliorate and hopefully reverse the developmental defects associated with obesity and GDM

    Sex and gender differences in developmental programming of metabolism

    No full text
    Background: The early life environment experienced by an individual in utero and during the neonatal period is a major factor in shaping later life disease risk-including susceptibility to develop obesity, diabetes, and cardiovascular disease. The incidence of metabolic disease is different between males and females. How the early life environment may underlie these sex differences is an area of active investigation. Scope of review: The purpose of this review is to summarize our current understanding of how the early life environment influences metabolic disease risk in a sex specific manner. We also discuss the possible mechanisms responsible for mediating these sexually dimorphic effects and highlight the results of recent intervention studies in animal models. Major conclusions: Exposure to states of both under- and over-nutrition during early life predisposes both sexes to develop metabolic disease. Females seem particularly susceptible to develop increased adiposity and disrupted glucose homeostasis as a result of exposure to in utero undernutrition or high sugar environments, respectively. The male placenta is particularly vulnerable to damage by adverse nutritional states and this may underlie some of the metabolic phenotypes observed in adulthood. More studies investigating both sexes are needed to understand how changes to the early life environment impact differently on the long-term health of male and female individuals. Keywords: Pregnancy, Perinatal, Under nutrition, Obesity, Diabetes, Developmental programming, Sex difference
    corecore