26 research outputs found

    Defect chemistry of mixed conducting double Perovskites

    Get PDF
    Barium Gadolinium Lanthanum Cobaltites with the general formula Ba1-xGd0.8-yLa0.2+x+yCo2O6-δ (BGLC) are reported as Mixed Proton and Electron Conducting materials (MPECs), and have been utilized as positrode (positive electrode) materials for Proton Ceramic Electrochemical Cells (PCECs) [1]. A defect chemical model, treating various charge carrying defects in BGLC was published in 2017 [2] and in this work we expand the model to also comprise formation of protons in BGLC. Protons can be incorporated by two different reactions, in a ratio depending on measurement conditions and the oxidation state of the material. Low temperatures and high pO2 leaves BGLC oxidized, and with increasing electron hole concentration, the hydrogenation reaction is promoted with respect to hydration. Hydrogenation is confirmed by use of isothermal Dry-H2O-D2O switches in thermogravimetric measurements, revealing a larger concentration of protons than expected from hydration only (Figure 1, left). The reduction of BGLC by hydrogenation is slowly counteracted by oxygen uptake combined with an expected cation reordering, bringing the material back to its initial oxidation state after equilibration in wet conditions. By combining oxidation and hydration thermodynamics, hydrogenation entropy and enthalpy can be obtained, making it possible to model proton concentrations from hydration and hydrogenation separately by use of advanced defect chemistry (Figure 1, right). Hydration is proposed to be facilitated by a minor concentration of oxygen vacancies in the O-Co-O layers, where acidic vacancies may accommodate basic hydroxyl groups. These vacancies are neighboured by more basic oxide ions in the O-Ba-O and O-Ln-O layers which in turn may accommodate protons. Please click Additional Files below to see the full abstract

    Thermal and Chemical Expansion in Proton Ceramic Electrolytes and Compatible Electrodes

    No full text
    This review paper focuses on the phenomenon of thermochemical expansion of two specific categories of conducting ceramics: Proton Conducting Ceramics (PCC) and Mixed Ionic-Electronic Conductors (MIEC). The theory of thermal expansion of ceramics is underlined from microscopic to macroscopic points of view while the chemical expansion is explained based on crystallography and defect chemistry. Modelling methods are used to predict the thermochemical expansion of PCCs and MIECs with two examples: hydration of barium zirconate (BaZr1−xYxO3−δ) and oxidation/reduction of La1−xSrxCo0.2Fe0.8O3−δ. While it is unusual for a review paper, we conducted experiments to evaluate the influence of the heating rate in determining expansion coefficients experimentally. This was motivated by the discrepancy of some values in literature. The conclusions are that the heating rate has little to no effect on the obtained values. Models for the expansion coefficients of a composite material are presented and include the effect of porosity. A set of data comprising thermal and chemical expansion coefficients has been gathered from the literature and presented here divided into two groups: protonic electrolytes and mixed ionic-electronic conductors. Finally, the methods of mitigation of the thermal mismatch problem are discussed

    Changes in the Properties in Bimodal Mg Alloy Bars Obtained for Various Deformation Patterns in the RSR Rolling Process

    No full text
    The paper presents the theoretical and experimental research conducted to date regarding the possibility of obtaining round bars from AZ31 magnesium alloy with a bimodal structure rolled in the radial shear rolling process (RSR) technology. There is no analysis of the impact of the deformation path (distribution of deformation in individual passes) on the mechanical properties and the obtained bar structure. The feedstock, namely, AZ31 magnesium alloy round bars with a diameter of 30 mm, were rolled in RSR to the final diameter of 15 mm with different levels of deformation in successive passes, at a temperature of 400 °C. The bars obtained as a result of the RSR rolling process have different hardness on the cross-section as well as a characteristic gradient grain size distribution. Based on the conducted research, it can be concluded that the use of a larger number of passes with a smaller cross-section reduction will result in an improved formation of a bimodal structure consisting of a highly fragmented near-surface structure and in the half of the radius of the structure of fragmented grains at the boundaries of larger grains

    Terbium Substituted Lanthanum Orthoniobate: Electrical and Structural Properties

    No full text
    The results of electrical conductivity studies, structural measurements and thermogravimetric analysis of La1−xTbxNbO4+δ (x = 0.00, 0.05, 0.1, 0.15, 0.2, 0.3) are presented and discussed. The phase transition temperatures, measured by high-temperature x-ray diffraction, were 480 °C, 500 °C, and 530 °C for La0.9Tb0.1NbO4+δ, La0.8Tb0.2NbO4+δ, and La0.7Tb0.3NbO4+δ, respectively. The impedance spectroscopy results suggest mixed conductivity of oxygen ions and electron holes in dry conditions and protons in wet. The water uptake has been analyzed by the means of thermogravimetry revealing a small mass increase in the order of 0.002% upon hydration, which is similar to the one achieved for undoped lanthanum orthoniobate

    Highly Conductive Ceramics with Multiple Types of Mobile Charge Carriers

    No full text
    Functional ceramic materials are of interest in many applications due to their structural and chemical richness and the huge range of physical properties that can be generated and modified by the control of the former (electrical conductivity, thermo-mechanical properties, dielectric, piezoelectric, ferroelectric properties, etc [...

    Praseodymium Orthoniobate and Praseodymium Substituted Lanthanum Orthoniobate: Electrical and Structural Properties

    No full text
    In this paper, the structural properties and the electrical conductivity of La1−xPrxNbO4+δ (x = 0.00, 0.05, 0.1, 0.15, 0.2, 0.3) and PrNbO4+δ are presented and discussed. All synthesized samples crystallized in a monoclinic structure with similar thermal expansion coefficients. The phase transition temperature between the monoclinic and tetragonal structure increases with increasing praseodymium content from 500 °C for undoped LaNbO4+δ to 700 °C for PrNbO4+δ. Thermogravimetry, along with X-ray photoelectron spectroscopy, confirmed a mixed 3+/4+ oxidation state of praseodymium. All studied materials, in humid air, exhibited mixed protonic, oxygen ionic and hole conductivity. The highest total conductivity was measured in dry air at 700 °C for PrNbO4+δ, and its value was 1.4 × 10−3 S/cm

    Effect of the Shape of Rolling Passes and the Temperature on the Corrosion Protection of the Mg/Al Bimetallic Bars

    No full text
    The paper presents the results of experimental tests of the rolling process of Mg/Al bimetallic bars in two systems of classic passes (horizontal oval-circle-horizontal oval-circle variant I) and modified (multi-radial horizontal oval-multi-radial vertical oval-multi-radial horizontal oval-circle-variant II). The feedstock in the form of round bimetallic bars with a diameter of 22 mm and 30% of the outer aluminum layer was made through explosive welding. The bimetallic bars consisted of an AZ31 magnesium core and a 1050A aluminum outer layer. Bars with a diameter of 17 mm were obtained as a result of rolling in four passes. The rolling process in the passes was conducted at two temperatures of 300 and 400 °C. Based on the analysis of the test results, it was found that the use of modified passes and a lower rolling temperature (300 °C) ensures a more homogenous distribution of the plating layer around the circumference of the core and results in an even grain decreasing, which improves the corrosion resistance of bimetallic bars compared to rolling bars in a classic system of passes and at a higher temperature (400 °C)

    The Effect of Post-Weld Hot-Rolling on the Properties of Explosively Welded Mg/Al/Ti Multilayer Composite

    No full text
    The paper describes an investigation of an explosively welded Mg/Al/Ti multilayer composite. Following the welding, the composite was subjected to hot-rolling in three different temperatures: 300 °C, 350 °C and 400 °C, with a total relative strain of 30%. The rolling speed was 0.2 m/s. The investigation of the composite properties involves microhardness analysis and mini-specimen tensile tests of the joints. The composite Mg/Al and Al/Ti bonds in the as-welded state and after rolling in 400 °C were subjected to microstructure analysis using scanning electron (SEM) and transmission electron microscopy (TEM). In the Al/Ti interface, the presence of melted zones with localized intermetallic precipitates has been reported in the as-welded state, and it has been stated that hot-rolling results in precipitation of intermetallic particles from the melted zone. The application of the hot-rolling process causes the formation of a continuous layer in the Mg/Al joint, consisting of two intermetallic phases, Mg2Al3 (β) and Mg17Al12 (γ)
    corecore