104 research outputs found

    Fast and Tiny Structural Self-Indexes for XML

    Full text link
    XML document markup is highly repetitive and therefore well compressible using dictionary-based methods such as DAGs or grammars. In the context of selectivity estimation, grammar-compressed trees were used before as synopsis for structural XPath queries. Here a fully-fledged index over such grammars is presented. The index allows to execute arbitrary tree algorithms with a slow-down that is comparable to the space improvement. More interestingly, certain algorithms execute much faster over the index (because no decompression occurs). E.g., for structural XPath count queries, evaluating over the index is faster than previous XPath implementations, often by two orders of magnitude. The index also allows to serialize XML results (including texts) faster than previous systems, by a factor of ca. 2-3. This is due to efficient copy handling of grammar repetitions, and because materialization is totally avoided. In order to compare with twig join implementations, we implemented a materializer which writes out pre-order numbers of result nodes, and show its competitiveness.Comment: 13 page

    Multiple Context-Free Tree Grammars: Lexicalization and Characterization

    Get PDF
    Multiple (simple) context-free tree grammars are investigated, where "simple" means "linear and nondeleting". Every multiple context-free tree grammar that is finitely ambiguous can be lexicalized; i.e., it can be transformed into an equivalent one (generating the same tree language) in which each rule of the grammar contains a lexical symbol. Due to this transformation, the rank of the nonterminals increases at most by 1, and the multiplicity (or fan-out) of the grammar increases at most by the maximal rank of the lexical symbols; in particular, the multiplicity does not increase when all lexical symbols have rank 0. Multiple context-free tree grammars have the same tree generating power as multi-component tree adjoining grammars (provided the latter can use a root-marker). Moreover, every multi-component tree adjoining grammar that is finitely ambiguous can be lexicalized. Multiple context-free tree grammars have the same string generating power as multiple context-free (string) grammars and polynomial time parsing algorithms. A tree language can be generated by a multiple context-free tree grammar if and only if it is the image of a regular tree language under a deterministic finite-copying macro tree transducer. Multiple context-free tree grammars can be used as a synchronous translation device.Comment: 78 pages, 13 figure

    Linear Bounded Composition of Tree-Walking Tree Transducers: Linear Size Increase and Complexity

    Get PDF
    Compositions of tree-walking tree transducers form a hierarchy with respect to the number of transducers in the composition. As main technical result it is proved that any such composition can be realized as a linear bounded composition, which means that the sizes of the intermediate results can be chosen to be at most linear in the size of the output tree. This has consequences for the expressiveness and complexity of the translations in the hierarchy. First, if the computed translation is a function of linear size increase, i.e., the size of the output tree is at most linear in the size of the input tree, then it can be realized by just one, deterministic, tree-walking tree transducer. For compositions of deterministic transducers it is decidable whether or not the translation is of linear size increase. Second, every composition of deterministic transducers can be computed in deterministic linear time on a RAM and in deterministic linear space on a Turing machine, measured in the sum of the sizes of the input and output tree. Similarly, every composition of nondeterministic transducers can be computed in simultaneous polynomial time and linear space on a nondeterministic Turing machine. Their output tree languages are deterministic context-sensitive, i.e., can be recognized in deterministic linear space on a Turing machine. The membership problem for compositions of nondeterministic translations is nondeterministic polynomial time and deterministic linear space. The membership problem for the composition of a nondeterministic and a deterministic tree-walking tree translation (for a nondeterministic IO macro tree translation) is log-space reducible to a context-free language, whereas the membership problem for the composition of a deterministic and a nondeterministic tree-walking tree translation (for a nondeterministic OI macro tree translation) is possibly NP-complete
    corecore