55 research outputs found

    Cytomegalovirus-Driven Adaptive-Like Natural Killer Cell Expansions Are Unaffected by Concurrent Chronic Hepatitis Virus Infections

    Get PDF
    Adaptive-like expansions of natural killer (NK) cell subsets are known to occur in response to human cytomegalovirus (CMV) infection. These expansions are typically made up of NKG2C+ NK cells with particular killer-cell immunoglobulin-like receptor (KIR) expression patterns. Such NK cell expansion patterns are also seen in patients with viral hepatitis infection. Yet, it is not known if the viral hepatitis infection promotes the appearance of such expansions or if effects are solely attributed to underlying CMV infection. In sizeable cohorts of CMV seropositive hepatitis B virus (HBV), hepatitis C virus (HCV), and hepatitis delta virus (HDV) infected patients, we analyzed NK cells for expression of NKG2A, NKG2C, CD57, and inhibitory KIRs to assess the appearance of NK cell expansions characteristic of what has been seen in CMV seropositive healthy individuals. Adaptive-like NK cell expansions observed in viral hepatitis patients were strongly associated with CMV seropositivity. The number of subjects with these expansions did not differ between CMV seropositive viral hepatitis patients and corresponding healthy controls. Hence, we conclude that adaptive-like NK cell expansions observed in HBV, HCV, and/or HDV infected individuals are not caused by the chronic hepatitis infections per se, but rather are a consequence of underlying CMV infection

    Stable Frequencies of HLA-C*03:04/Peptide-Binding KIR2DL2/3+ Natural Killer Cells Following Vaccination

    Get PDF
    Inhibitory KIRs play a central role in regulating NK cell activity. KIR2DL2/3 bind to HLA-C molecules, but the modulation of these interactions by viral infections and presentation of viral epitopes is not well-understood. We investigated whether the frequencies of KIR2DL2/3+ NK cells recognizing HLA-C*03:04/viral peptide complexes were impacted by YFV vaccination or HIV-1 and HCV infection. Ex vivo HLA class I tetramer staining of primary human NK cells derived from YFV-vaccinated individuals, or HIV-1- or HCV-infected individuals revealed that the YFV/HLA-C*03:04-NS2A4−13-tetramer bound to a larger proportion of KIR2DL2/3+ NK cells compared to HIV-1/HLA-C*03:04-Gag296−304- or HCV/HLA-C*03:04-Core136−144-tetramers. The YFV/HLA-C*03:04-NS2A4−13-tetramer also exhibited a stronger avidity to KIR2DL2/3 compared to the other tested tetramers. The proportional frequencies of KIR2DL2/3+ NK cells binding to the three tested HLA-C*03:04 tetramers were identical between YFV-vaccinated individuals or HIV-1- or HCV-infected individuals, and remained stable following YFV vaccination. These data demonstrate consistent hierarchies in the frequency of primary KIR2DL2/3+ NK cells binding HLA-C*03:04/peptide complexes that were determined by the HLA-C-presented peptide and not modulated by the underlying viral infection or vaccination

    Dual Function of the NK Cell Receptor 2B4 (CD244) in the Regulation of HCV-Specific CD8+ T Cells

    Get PDF
    The outcome of viral infections is dependent on the function of CD8+ T cells which are tightly regulated by costimulatory molecules. The NK cell receptor 2B4 (CD244) is a transmembrane protein belonging to the Ig superfamily which can also be expressed by CD8+ T cells. The aim of this study was to analyze the role of 2B4 as an additional costimulatory receptor regulating CD8+ T cell function and in particular to investigate its implication for exhaustion of hepatitis C virus (HCV)-specific CD8+ T cells during persistent infection. We demonstrate that (i) 2B4 is expressed on virus-specific CD8+ T cells during acute and chronic hepatitis C, (ii) that 2B4 cross-linking can lead to both inhibition and activation of HCV-specific CD8+ T cell function, depending on expression levels of 2B4 and the intracellular adaptor molecule SAP and (iii) that 2B4 stimulation may counteract enhanced proliferation of HCV-specific CD8+ T cells induced by PD1 blockade. We suggest that 2B4 is another important molecule within the network of costimulatory/inhibitory receptors regulating CD8+ T cell function in acute and chronic hepatitis C and that 2B4 expression levels could also be a marker of CD8+ T cell dysfunction. Understanding in more detail how 2B4 exerts its differential effects could have implications for the development of novel immunotherapies of HCV infection aiming to achieve immune control

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    Get PDF

    Tissue-resident Eomes+ NK cells are the major innate lymphoid cell population in human infant intestine

    No full text
    Innate lymphoid cells (ILC), including natural killer (NK) cells, are implicated in host-defense and tissue-growth. However, the composition and kinetics of NK cells in the intestine during the first year of life, when infants are first broadly exposed to exogenous antigens, are still unclear. Here we show that CD103+ NK cells are the major ILC population in the small intestines of infants. When compared to adult intestinal NK cells, infant intestinal NK cells exhibit a robust effector phenotype, characterized by Eomes, perforin and granzyme B expression, and superior degranulation capacity. Absolute intestinal NK cell numbers decrease gradually during the first year of life, coinciding with an influx of intestinal Eomes+ T cells; by contrast, epithelial NKp44+CD69+ NK cells with less cytotoxic capacity persist in adults. In conclusion, NK cells are abundant in infant intestines, where they can provide effector functions while Eomes+ T cell responses mature

    Stable Frequencies of HLA-C*03:04/Peptide-Binding KIR2DL2/3+ Natural Killer Cells Following Vaccination

    No full text
    Inhibitory KIRs play a central role in regulating NK cell activity. KIR2DL2/3 bind to HLA-C molecules, but the modulation of these interactions by viral infections and presentation of viral epitopes is not well-understood. We investigated whether the frequencies of KIR2DL2/3+ NK cells recognizing HLA-C*03:04/viral peptide complexes were impacted by YFV vaccination or HIV-1 and HCV infection. Ex vivo HLA class I tetramer staining of primary human NK cells derived from YFV-vaccinated individuals, or HIV-1- or HCV-infected individuals revealed that the YFV/HLA-C*03:04-NS2A4−13-tetramer bound to a larger proportion of KIR2DL2/3+ NK cells compared to HIV-1/HLA-C*03:04-Gag296−304- or HCV/HLA-C*03:04-Core136−144-tetramers. The YFV/HLA-C*03:04-NS2A4−13-tetramer also exhibited a stronger avidity to KIR2DL2/3 compared to the other tested tetramers. The proportional frequencies of KIR2DL2/3+ NK cells binding to the three tested HLA-C*03:04 tetramers were identical between YFV-vaccinated individuals or HIV-1- or HCV-infected individuals, and remained stable following YFV vaccination. These data demonstrate consistent hierarchies in the frequency of primary KIR2DL2/3+ NK cells binding HLA-C*03:04/peptide complexes that were determined by the HLA-C-presented peptide and not modulated by the underlying viral infection or vaccination

    HIV-1 induced changes in HLA-C*03 :  04-presented peptide repertoires lead to reduced engagement of inhibitory natural killer cell receptors

    No full text
    OBJECTIVE: Viral infections influence intracellular peptide repertoires available for presentation by HLA-I. Alterations in HLA-I/peptide complexes can modulate binding of killer immunoglobuline-like receptors (KIRs) and thereby the function of natural killer (NK) cells. Although multiple studies have provided evidence that HLA-I/KIR interactions play a role in HIV-1 disease progression, the consequence of HIV-1 infection for HLA-I/KIR interactions remain largely unknown. DESIGN: We determined changes in HLA-I presented peptides resulting from HIV-1-infection of primary human CD4 T cells and assessed the impact of changes in peptide repertoires on HLA-I/KIR interactions. METHODS: Liquid chromatography-coupled tandem mass spectrometry to identify HLA-I presented peptides, cell-based in-vitro assays to evaluate functional consequences of alterations in immunopeptidome and atomistic molecular dynamics simulations to confirm experimental data. RESULTS: A total of 583 peptides exclusively presented on HIV-1-infected cells were identified, of which only 0.2% represented HIV-1 derived peptides. Focusing on HLA-C*03 : 04/KIR2DL3 interactions, we observed that HLA-C*03 : 04-presented peptides derived from noninfected CD4 T cells mediated stronger binding of inhibitory KIR2DL3 than peptides derived from HIV-1-infected cells. Furthermore, the most abundant peptide presented by HLA-C*03 : 04 on noninfected CD4 T cells (VIYPARISL) mediated the strongest KIR2DL3-binding, while the most abundant peptide presented on HIV-1-infected cells (YAIQATETL) did not mediate KIR2DL3-binding. Molecular dynamics simulations of HLA-C*03 : 04/KIR2DL3 interactions in the context of these two peptides revealed that VIYPARISL significantly enhanced the HLA-C*03 : 04/peptide contact area to KIR2DL3 compared with YAIQATETL. CONCLUSION: These data demonstrate that HIV-1 infection-induced changes in HLA-I-presented peptides can reduce engagement of inhibitory KIRs, providing a mechanism for enhanced activation of NK cells by virus-infected cells

    Hobit expression by a subset of human liver-resident CD56(bright) Natural Killer cells

    No full text
    Immune responses show a high degree of tissue specificity shaped by factors influencing tissue egress and retention of immune cells. The transcription factor Hobit was recently shown to regulate tissue-residency in mice. Whether Hobit acts in a similar capacity in humans remains unknown. Our aim was to assess the expression and contribution of Hobit to tissue-residency of Natural Killer (NK) cells in the human liver. The human liver was enriched for CD56(bright) NK cells showing increased expression levels of the transcription factor Hobit. Hobit(pos) CD56(bright) NK cells in the liver exhibited high levels of CD49a, CXCR6 and CD69. Hobit(pos) CD56(bright) NK cells in the liver furthermore expressed a unique set of transcription factors with higher frequencies and levels of T-bet and Blimp-1 when compared to Hobit(neg) CD56(bright) NK cells. Taken together, we show that the transcription factor Hobit identifies a subset of NK cells in human livers that express a distinct set of adhesion molecules and chemokine receptors consistent with tissue residency. These data suggest that Hobit is involved in regulating tissue-residency of human intrahepatic CD56(bright) NK cells in a subset of NK cells in inflamed liver

    PEG-IFN alpha but not ribavirin alters NK cell phenotype and function in patients with chronic hepatitis C

    No full text
    Background: Ribavirin (RBV) remains part of several interferon-free treatment strategies even though its mechanisms of action are still not fully understood. One hypothesis is that RBV increases responsiveness to type I interferons. Pegylated Interferon alpha (PEG-IFNa) has recently been shown to alter natural killer (NK) cell function possibly contributing to control of hepatitis C virus (HCV) infection. However, the effects of ribavirin alone or in combination with IFNa on NK cells are unknown. Methods: Extensive ex vivo phenotyping and functional analysis of NK cells from hepatitis C patients was performed during antiviral therapy. Patients were treated for 6 weeks with RBV monotherapy (n = 11), placebo (n = 13) or PEG-IFNa-2a alone (n = 6) followed by PEG-IFNa/RBV combination therapy. The effects of RBV and PEG-IFNa-2a on NK cells were also studied in vitro after co-culture with K562 or Huh7.5 cells. Results: Ribavirin monotherapy had no obvious effects on NK cell phenotype or function, neither ex vivo in patients nor in vitro. In contrast, PEG-IFNa-2a therapy was associated with an increase of CD56bright cells and distinct changes in expression profiles leading to an activated NK cell phenotype, increased functionality and decline of terminally differentiated NK cells. Ribavirin combination therapy reduced some of the IFN effects. An activated NK cell phenotype during therapy was inversely correlated with HCV viral load. Conclusions: PEG-IFNa activates NK cells possibly contributing to virological responses independently of RBV. The role of NK cells during future IFN-free combination therapies including RBV remains to be determined
    • …
    corecore