8 research outputs found

    Mapping the Hidden Universe: The Galaxy Distribution in the Zone of Avoidance

    Get PDF
    Due to the foreground extinction of the Milky Way, galaxies become increasingly faint as they approach the Galactic Equator creating a ``zone of avoidance'' (ZOA) in the distribution of optically visible galaxies of about 25%. A ``whole-sky'' map of galaxies is essential, however, for understanding the dynamics in our local Universe, in particular the peculiar velocity of the Local Group with respect to the Cosmic Microwave Background and velocity flow fields such as in the Great Attractor (GA) region. The current status of deep optical galaxy searches behind the Milky Way and their completeness as a function of foreground extinction will be reviewed. It has been shown that these surveys - which in the mean time cover the whole ZOA (Fig. 2) - result in a considerable reduction of the ZOA from extinction levels of A_B = 1.0 mag (Fig. 1) to A_B = 3.0 mag (Fig. 2). In the remaining, optically opaque ZOA, systematic HI surveys are powerful in uncovering galaxies, as is demonstrated for the GA region with data from the full sensitivity Parkes Multibeam HI survey (300 < l < 332 deg, |b| < 5.5 deg, Fig. 4).Comment: Accepted for publication in PASA (Volume 17, 1, to appear April 2000); LaTex, 4 encapsulated (reduced) ps-figures, requires psfig. Full-resolution color figures 1, 3, and 4 are available upon request at e-mail: [email protected] or at http://www.atnf.csiro.au/pasa/17_1

    Thoracic Surgery in the COVID-19 Pandemic: A Novel Approach to Reach Guideline Consensus

    Get PDF
    The COVID-19 pandemic challenges international and national healthcare systems. In the field of thoracic surgery, procedures may be deferred due to mandatory constraints of the access to diagnostics, staff and follow-up facilities. There is a lack of prospective data on the management of benign and malignant thoracic conditions in the pandemic. Therefore, we derived recommendations from 14 thoracic societies to address key questions on the topic of COVID-19 in the field of thoracic surgery. Respective recommendations were extracted and the degree of consensus among different organizations was calculated. A high degree of consensus was found to temporarily suspend non-critical elective procedures or procedures for benign conditions and to prioritize patients with symptomatic or advanced cancer. Prior to hospitalization, patients should be screened for respiratory symptoms indicating possible COVID-19 infection and most societies recommended to screen all patients for COVID-19 prior to admission. There was a weak consensus on the usage of serology tests and CT scans for COVID-19 diagnostics. Nearly all societies suggested to postpone elective procedures in patients with suspected or confirmed COVID-19 and recommended constant reevaluation of these patients. Additionally, we summarized recommendations focusing on precautions in the theater and the management of chest drains. This study provides a novel approach to informed guidance for thoracic surgeons during the COVID-19 pandemic in the absence of scientific evidence-based data

    Risk of COVID-19 after natural infection or vaccinationResearch in context

    No full text
    Summary: Background: While vaccines have established utility against COVID-19, phase 3 efficacy studies have generally not comprehensively evaluated protection provided by previous infection or hybrid immunity (previous infection plus vaccination). Individual patient data from US government-supported harmonized vaccine trials provide an unprecedented sample population to address this issue. We characterized the protective efficacy of previous SARS-CoV-2 infection and hybrid immunity against COVID-19 early in the pandemic over three-to six-month follow-up and compared with vaccine-associated protection. Methods: In this post-hoc cross-protocol analysis of the Moderna, AstraZeneca, Janssen, and Novavax COVID-19 vaccine clinical trials, we allocated participants into four groups based on previous-infection status at enrolment and treatment: no previous infection/placebo; previous infection/placebo; no previous infection/vaccine; and previous infection/vaccine. The main outcome was RT-PCR-confirmed COVID-19 >7–15 days (per original protocols) after final study injection. We calculated crude and adjusted efficacy measures. Findings: Previous infection/placebo participants had a 92% decreased risk of future COVID-19 compared to no previous infection/placebo participants (overall hazard ratio [HR] ratio: 0.08; 95% CI: 0.05–0.13). Among single-dose Janssen participants, hybrid immunity conferred greater protection than vaccine alone (HR: 0.03; 95% CI: 0.01–0.10). Too few infections were observed to draw statistical inferences comparing hybrid immunity to vaccine alone for other trials. Vaccination, previous infection, and hybrid immunity all provided near-complete protection against severe disease. Interpretation: Previous infection, any hybrid immunity, and two-dose vaccination all provided substantial protection against symptomatic and severe COVID-19 through the early Delta period. Thus, as a surrogate for natural infection, vaccination remains the safest approach to protection. Funding: National Institutes of Health
    corecore