22 research outputs found

    Precise optical control of gene expression in C elegans using improved genetic code expansion and Cre recombinase.

    Get PDF
    Synthetic strategies for optically controlling gene expression may enable the precise spatiotemporal control of genes in any combination of cells that cannot be targeted with specific promoters. We develop an improved genetic code expansion system in Caenorhabditis elegans and use it to create a photoactivatable Cre recombinase. We laser-activate Cre in single neurons within a bilaterally symmetric pair to selectively switch on expression of a loxP-controlled optogenetic channel in the targeted neuron. We use the system to dissect, in freely moving animals, the individual contributions of the mechanosensory neurons PLML/PLMR to the C. elegans touch response circuit, revealing distinct and synergistic roles for these neurons. We thus demonstrate how genetic code expansion and optical targeting can be combined to break the symmetry of neuron pairs and dissect behavioural outputs of individual neurons that cannot be genetically targeted

    DAF-16/FOXO and EGL-27/GATA promote developmental growth in response to persistent somatic DNA damage

    Get PDF
    Genome maintenance defects cause complex disease phenotypes characterized by developmental failure, cancer susceptibility and premature ageing. It remains poorly understood how DNA damage responses function during organismal development and maintain tissue functionality when DNA damage accumulates with ageing. Here we show that the FOXO transcription factor DAF-16 is activated in response to DNA damage during development, whereas the DNA damage responsiveness of DAF-16 declines with ageing. We find that in contrast to its established role in mediating starvation arrest, DAF-16 alleviates DNA-damage-induced developmental arrest and even in the absence of DNA repair promotes developmental growth and enhances somatic tissue functionality. We demonstrate that the GATA transcription factor EGL-27 co-regulates DAF-16 target genes in response to DNA damage and together with DAF-16 promotes developmental growth. We propose that EGL-27/GATA activity specifies DAF-16-mediated DNA damage responses to enable developmental progression and to prolong tissue functioning when DNA damage persists

    C. elegans SIR-2.1 translocation is linked to a proapoptotic pathway parallel to cep-1/p53 during DNA damage-induced apoptosis

    Get PDF
    Caenorhabditis elegans SIR-2.1, a member of the sirtuin family related to Saccharomyces cerevisiae Sir2p, has previously been implicated in aging. The mammalian homolog SIRT1 plays important roles in multiple cellular processes including transcriptional repression and stress response. We show that sir-2.1 is essential for the execution of apoptosis in response to DNA damage, and that sir-2.1 genetically acts in parallel to the worm p53-like gene cep-1. This novel cep-1-independent proapoptotic pathway does not require the daf-16 FOXO transcription factor. Cytological analysis of SIR-2.1 suggests a novel mechanism of apoptosis induction. During apoptosis SIR-2.1 changes its subcellular localization from the nucleus to the cytoplasm and transiently colocalizes with the C. elegans Apaf-1 homolog CED-4 at the nuclear periphery. SIR-2.1 translocation is an early event in germ cell apoptosis and is independent of apoptosis execution and cep-1, raising the possibility that SIR-2.1 translocation is linked to the induction of DNA damage-induced apoptosis

    Expanding the Genetic Code of an Animal

    No full text
    Genetic code expansion, for the site-specific incorporation of unnatural amino acids into proteins, is currently limited to cultured cells and unicellular organisms. Here we expand the genetic code of a multicellular animal, the nematode <i>Caenorhabditis elegans</i>

    Report Cell-Nonautonomous Regulation of C. elegans Germ Cell Death by kri-1

    No full text
    Summary Programmed cell death (or apoptosis) is an evolutionarily conserved, genetically controlled suicide mechanism for cells that, when deregulated, can lead to developmental defects, cancers, and degenerative diseases Results and Discussion In an RNA interference (RNAi) screen unrelated to apoptosis, we serendipitously uncovered a cep-1/p53-interacting gene, kri-1, the ortholog of human KRIT1/CCM1, which is frequently mutated in the neurovascular disease cerebral cavernous malformation Given that kri-1 is required to promote germ cell death in response to DNA damage, we were interested to know at which step in the pathway it might be functioning

    Transcriptional profiling in C-elegans suggests DNA damage dependent apoptosis as an ancient function of the p53 family

    Get PDF
    Background: In contrast to the three mammalian p53 family members, p53, which is generally involved in DNA damage responses, and p63 and p73 which are primarily needed for developmental regulation, cep-1 encodes for the single C. elegans p53-like gene. cep-1 acts as a transcription activator in a primordial p53 pathway that involves CEP-1 activation and the CEP-1 dependent transcriptional induction of the worm BH3 only domain encoding genes egl-1 and ced-13 to induce germ cell apoptosis. EGL-1 and CED-13 proteins inactivate Bcl-2 like CED-9 to trigger CED-4 and CED-3 caspase dependent germ cell apoptosis. To address the function of p53 in global transcriptional regulation we investigate genome-wide transcriptional responses upon DNA damage and cep-1 deficiency. Results: Examining C. elegans expression profiles using whole genome Affymetrix GeneChip arrays, we found that 83 genes were induced more than two fold upon ionizing radiation (IR). None of these genes, with exception of an ATP ribosylase homolog, encode for known DNA repair genes. Using two independent cep-1 loss of function alleles we did not find genes regulated by cep-1 in the absence of IR. Among the IR-induced genes only three are dependent on cep-1, namely egl-1, ced-13 and a novel C. elegans specific gene. The majority of IR-induced genes appear to be involved in general stress responses, and qRT-PCR experiments indicate that they are mainly expressed in somatic tissues. Interestingly, we reveal an extensive overlap of gene expression changes occurring in response to DNA damage and in response to bacterial infection. Furthermore, many genes induced by IR are also transcriptionally regulated in longevity mutants suggesting that DNA damage and aging induce an overlapping stress response. Conclusion: We performed genome-wide gene expression analyses which indicate that only a surprisingly small number of genes are regulated by CEP-1 and that DNA damage induced apoptosis via the transcriptional induction of BH3 domain proteins is likely to be an ancient DNA damage response function of the p53 family. Interestingly, although the apoptotic response to DNA damage is regulated through the transcriptional activity of CEP-1, other DNA damage responses do not appear to be regulated on the transcriptional level and do not require the p53 like gene cep-1

    Efficient and Rapid <i>C. elegans</i> Transgenesis by Bombardment and Hygromycin B Selection

    Get PDF
    <div><p>We report a simple, cost-effective, scalable and efficient method for creating transgenic <i>Caenorhabditis elegans</i> that requires minimal hands-on time. The method combines biolistic bombardment with selection for transgenics that bear a hygromycin B resistance gene on agar plates supplemented with hygromycin B, taking advantage of our observation that hygromycin B is sufficient to kill wild-type <i>C. elegans</i> at very low concentrations. Crucially, the method provides substantial improvements in the success of bombardments for isolating transmitting strains, the isolation of multiple independent strains, and the isolation of integrated strains: 100% of bombardments in a large data set yielded transgenics; 10 or more independent strains were isolated from 84% of bombardments, and up to 28 independent strains were isolated from a single bombardment; 82% of bombardments yielded stably transmitting integrated lines with most yielding multiple integrated lines. We anticipate that the selection will be widely adopted for <i>C. elegans</i> transgenesis via bombardment, and that hygromycin B resistance will be adopted as a marker in other approaches for manipulating, introducing or deleting DNA in <i>C. elegans</i>.</p></div
    corecore