16 research outputs found

    An accurate and flexible analog emulation of AdEx neuron dynamics in silicon

    Full text link
    Analog neuromorphic hardware promises fast brain emulation on the one hand and an efficient implementation of novel, brain-inspired computing paradigms on the other. Bridging this spectrum requires flexibly configurable circuits with reliable and reproducible dynamics fostered by an accurate implementation of the targeted neuron and synapse models. This manuscript presents the analog neuron circuits of the mixed-signal accelerated neuromorphic system BrainScaleS-2. They are capable of flexibly and accurately emulating the adaptive exponential leaky integrate-and-fire model equations in combination with both current- and conductance-based synapses, as demonstrated by precisely replicating a wide range of complex neuronal dynamics and firing patterns.Comment: Accepted for ICECS 202

    Structural plasticity on an accelerated analog neuromorphic hardware system

    Get PDF
    In computational neuroscience, as well as in machine learning, neuromorphic devices promise an accelerated and scalable alternative to neural network simulations. Their neural connectivity and synaptic capacity depends on their specific design choices, but is always intrinsically limited. Here, we present a strategy to achieve structural plasticity that optimizes resource allocation under these constraints by constantly rewiring the pre- and gpostsynaptic partners while keeping the neuronal fan-in constant and the connectome sparse. In particular, we implemented this algorithm on the analog neuromorphic system BrainScaleS-2. It was executed on a custom embedded digital processor located on chip, accompanying the mixed-signal substrate of spiking neurons and synapse circuits. We evaluated our implementation in a simple supervised learning scenario, showing its ability to optimize the network topology with respect to the nature of its training data, as well as its overall computational efficiency

    Gradient-based methods for spiking physical systems

    Full text link
    Recent efforts have fostered significant progress towards deep learning in spiking networks, both theoretical and in silico. Here, we discuss several different approaches, including a tentative comparison of the results on BrainScaleS-2, and hint towards future such comparative studies.Comment: 2 page abstract, submitted to and accepted by the NNPC (International conference on neuromorphic, natural and physical computing

    Demonstrating Analog Inference on the BrainScaleS-2 Mobile System

    Full text link
    We present the BrainScaleS-2 mobile system as a compact analog inference engine based on the BrainScaleS-2 ASIC and demonstrate its capabilities at classifying a medical electrocardiogram dataset. The analog network core of the ASIC is utilized to perform the multiply-accumulate operations of a convolutional deep neural network. At a system power consumption of 5.6W, we measure a total energy consumption of 192uJ for the ASIC and achieve a classification time of 276us per electrocardiographic patient sample. Patients with atrial fibrillation are correctly identified with a detection rate of (93.7±{\pm}0.7)% at (14.0±{\pm}1.0)% false positives. The system is directly applicable to edge inference applications due to its small size, power envelope, and flexible I/O capabilities. It has enabled the BrainScaleS-2 ASIC to be operated reliably outside a specialized lab setting. In future applications, the system allows for a combination of conventional machine learning layers with online learning in spiking neural networks on a single neuromorphic platform

    Demonstrating Advantages of Neuromorphic Computation: A Pilot Study

    Get PDF
    Neuromorphic devices represent an attempt to mimic aspects of the brain's architecture and dynamics with the aim of replicating its hallmark functional capabilities in terms of computational power, robust learning and energy efficiency. We employ a single-chip prototype of the BrainScaleS 2 neuromorphic system to implement a proof-of-concept demonstration of reward-modulated spike-timing-dependent plasticity in a spiking network that learns to play the Pong video game by smooth pursuit. This system combines an electronic mixed-signal substrate for emulating neuron and synapse dynamics with an embedded digital processor for on-chip learning, which in this work also serves to simulate the virtual environment and learning agent. The analog emulation of neuronal membrane dynamics enables a 1000-fold acceleration with respect to biological real-time, with the entire chip operating on a power budget of 57mW. Compared to an equivalent simulation using state-of-the-art software, the on-chip emulation is at least one order of magnitude faster and three orders of magnitude more energy-efficient. We demonstrate how on-chip learning can mitigate the effects of fixed-pattern noise, which is unavoidable in analog substrates, while making use of temporal variability for action exploration. Learning compensates imperfections of the physical substrate, as manifested in neuronal parameter variability, by adapting synaptic weights to match respective excitability of individual neurons.Comment: Added measurements with noise in NEST simulation, add notice about journal publication. Frontiers in Neuromorphic Engineering (2019

    Fast and deep: energy-efficient neuromorphic learning with first-spike times

    Get PDF
    For a biological agent operating under environmental pressure, energy consumption and reaction times are of critical importance. Similarly, engineered systems also strive for short time-to-solution and low energy-to-solution characteristics. At the level of neuronal implementation, this implies achieving the desired results with as few and as early spikes as possible. In the time-to-first-spike-coding framework, both of these goals are inherently emerging features of learning. Here, we describe a rigorous derivation of learning such first-spike times in networks of leaky integrate-and-fire neurons, relying solely on input and output spike times, and show how it can implement error backpropagation in hierarchical spiking networks. Furthermore, we emulate our framework on the BrainScaleS-2 neuromorphic system and demonstrate its capability of harnessing the chip's speed and energy characteristics. Finally, we examine how our approach generalizes to other neuromorphic platforms by studying how its performance is affected by typical distortive effects induced by neuromorphic substrates.Comment: 20 pages, 8 figure
    corecore