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Abstract

For a biological agent operating under environmental pres-

sure, energy consumption and reaction times are of criti-

cal importance. Similarly, engineered systems are optimized

for short time-to-solution and low energy-to-solution char-

acteristics. At the level of neuronal implementation, this

implies achieving the desired results with as few and as

early spikes as possible. With time-to-first-spike coding both

of these goals are inherently emerging features of learning.

Here, we describe a rigorous derivation of a learning rule

for such first-spike times in networks of leaky integrate-and-

fire neurons, relying solely on input and output spike times,

and show how this mechanism can implement error back-

propagation in hierarchical spiking networks. Furthermore,

we emulate our framework on the BrainScaleS-2 neuromor-

phic system and demonstrate its capability of harnessing the

system’s speed and energy characteristics. Finally, we ex-

amine how our approach generalizes to other neuromorphic

platforms by studying how its performance is affected by typ-

ical distortive effects induced by neuromorphic substrates.

Introduction

In recent years, the machine learning landscape has been

dominated by deep learning methods. Among the bench-

mark problems they managed to crack, some were thought

to still remain elusive for a long time [1–3]. It is thus not

exaggerated to say that deep learning dominates our under-

standing of “artificial intelligence” [4–8].

Compared to abstract neural networks used in deep learn-

ing, their more biological archetypes — spiking neural net-

works — still lag behind in performance and scalability

[9]. Reasons for this difference in success are numerous;

for instance, unlike abstract neurons, even an individual bi-

ological neuron represents a complex system, with finite re-

sponse times, membrane dynamics and spike-based commu-

nication [10, 11], making it more challenging to find reliable

coding and computation paradigms [12–14]. Furthermore,

one of the major driving forces behind the success of deep

learning, the backpropagation of errors algorithm [15–17],

remained incompatible with spiking neural networks until

only very recently [18, 19].

Despite these challenges, spiking neural networks promise

to hold some important advantages. The time informa-

tion inherent to spikes allows a coding scheme for spike-

based communication that utilizes both spatial and tem-

poral dimensions [20], unlike spike-count-based approaches

[21–24], where the information of spike times is at least par-

tially diluted due to temporal or population averaging. Ow-

ing to the inherent parallelism of all biological, as well as

many biologically-inspired, spiking neuromorphic systems

[25], this promises fast, sparse and energy-efficient infor-

mation processing, and provides a blueprint for comput-

ing architectures that could one day rival the efficiency of

the brain itself [9, 25–27]. This makes spiking neural net-

works implemented on specialised neuromorphic devices po-

tentially more powerful — at least in principle — than the

“conventional”, simple machine learning models currently

used on von-Neumann machines, even though this potential

still remains mostly unexploited [9].

Many attempts have been made to reconcile spiking neu-

ral networks with their abstract counterparts in terms of

functionality, e.g., featuring spike-based inference models

[28–36] and deep models trained on target spike times by

shallow learning rules [37, 38] or using spike-compatible ver-

sions of the error backpropagation algorithm [39–41]. Es-

pecially for tasks operating on static information, a partic-

ularly elegant way of utilizing the temporal aspect of exact

spike times is the time-to-first-spike (TTFS) coding scheme

[42]. Here, a neuron encodes its real-valued response to a

stimulus as the time elapsed before its first spike in reaction

to that stimulus. Such single-spike coding enables fast in-

formation processing by explicitly encouraging the emission
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of as few spikes as early as possible, which meets physiolog-

ical constraints and reaction times observed in humans and

animals [42–45]. Apart from biological plausibility, such a

fast and sparse coding scheme is a natural fit for neuromor-

phic systems that offer energy-efficient and fast emulation

of spiking neural networks [46–52].

For hierarchical TTFS networks, a gradient-descent-

based learning rule was proposed in [53, 54], using error

backpropagation on a continuous function of output spike

times. However, this approach is limited to a neuron model

without leak, which is neither biologically plausible, nor

compatible with most analog very-large-scale integration

(VLSI) neuron dynamics [25]. We propose a solution for

leaky integrate-and-fire (LIF) neurons with current-based

(CuBa) synapses — a widely-used dynamical model of spik-

ing neurons with realistic integration behavior [55–57]. An

early version of this work was presented in Göltz [58].

For several specific configurations of time constants, we

provide analytical expressions for first-spike timing, which,

in turn, allow the calculation of exact gradients of any dif-

ferentiable cost function that depends on these spike times.

In hierarchical networks of LIF neurons using the TTFS

coding scheme, this enables exact error backpropagation,

allowing us to train such networks as universal classifiers on

both continuous and discrete data spaces.

As our algorithm only requires knowledge about affer-

ent and efferent spike times of all neurons, it lends itself

to emulation on neuromorphic hardware. The accelerated,

yet power-efficient BrainScaleS-2 platform [48, 59] pairs es-

pecially well with the sparseness and low latency already

inherent to TTFS coding. We show how an implementation

of our algorithm on BrainScaleS-2 can obtain similar classi-

fication accuracies to software simulations, while displaying

highly competitive time and power characteristics, with a

combination of 48 µs and 8.4 µJ per classification.

By incorporating information generated on the hardware

for updates during training, the algorithm automatically

adapts to potential imperfections of neuromorphic circuits,

as implicitly demonstrated by our neuromorphic implemen-

tation. In further software simulations, we show that our

model deals well with various levels of substrate-induced dis-

tortions such as fixed-pattern noise and limited parameter

precision and control, thus providing a rigorous algorith-

mic backbone for a wide range of neuromorphic substrates

and applications. Such robustness with respect to imper-

fections of the underlying neuronal substrate represents an

indispensable property for any network model aiming for

biological plausibility and for every application geared to-

wards physical computing systems [33, 34, 60–64].

In the following, we first introduce the CuBa LIF model

and the TTFS coding scheme, before we demonstrate how
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Figure 1: Time-to-first-spike coding and learning. Top: sin-
gle neurons. (a) Postsynaptic potential (PSP) shapes for different
ratios of time constants τs and τm. The finiteness of time constants
causes the neuron to gradually forget prior input. (b) One key chal-
lenge of this finite memory arises when small variations of the synaptic
weights result in disappearing/appearing output spikes, which elicits a
discontinuity in the function describing output spike timing. Bottom:
application to feedforward hierarchical networks. (c) Network
structure. The geometric shape of the neurons represents a notation
of their respective types (input �, hidden ◦, label 4). The shading
of the input neurons is a representation of the corresponding data,
such as pixel brightness (�, . . . ,�, . . . ,�). The color of the label neu-
rons represents their respective class (N, N, N). (d) Time-to-first-spike
(TTFS) coding exemplified in a raster plot. As an example of input
encoding, the brightness of an input pixel is encoded in the lateness
of a spike. Note that in our framework, TTFS coding simultaneously
refers to two individual aspects, namely the input-to-spike-time con-
version and the determination of the inferred class by the identity of
the first label neuron to fire (N). In all figures we denote units in
square brackets; in particular, we use [a. u.] for arbitrary units, and
[1] for dimensionless quantities, and [τs] for times that are measured
in multiples of the synaptic time constant τs.

both inference and training via error backpropagation can

be performed analytically with such dynamics. Finally, the

presented model is evaluated both in software simulations

and neuromorphic emulations, before studying effects of sev-

eral types of substrate-induced distortions.

Results

Leaky integrate-and-fire dynamics The dynamics of

an LIF neuron with CuBa synapses are given by

Cmu̇(t) = g`[E`−u(t)]+
∑
i

wi
∑
ti

θ(t− ti) exp

(
− t− ti

τs

)
,

(1)

with membrane capacitance Cm, leak conductance g` (from

which the membrane time constant τm = Cm/g` follows),

presynaptic weights wi and spike times ti, synaptic time

2



constant τs and θ the Heaviside step function. The first

sum runs over all presynaptic neurons while the second sum

runs over all spikes for each presynaptic neuron. The neuron

elicits a spike at time T when the presynaptic input pushes

the membrane potential above a threshold ϑ. After spiking,

a neuron becomes refractory for a time period τref , which

is modeled by clamping its membrane potential to a reset

value %: u(t′) = % for T ≤ t′ ≤ T+τref . For convenience and

without loss of generality, we set the leak potential E` = 0.

Eqn. (1) can be solved analytically and yields subthreshold

dynamics as described by Eqn. (9). The choice of τm and τs
ultimately influences the shape of a postsynaptic potential

(PSP), starting from a simple exponential (τm � τs), to a

difference of exponentials (with an alpha function for the

special case of τm = τs) to a graded step function (τm � τs)

(Fig. 1a). Note that all of these scenarios are conserved un-

der exchange of τs and τm, as is apparent from the symmetry

of the analytical solution (Eqn. (9)).

The first two cases with finite membrane time constant

τm are markedly different from the last one, which is also

known as either the non-leaky integrate-and-fire (nLIF) or

simply integrate-and-fire (IF) model and was used in previ-

ous work [53]. In the nLIF model, input to the membrane is

never forgotten until a neuron spikes, as opposed to the LIF

model, where the PSP reaches a peak after finite time and

subsequently decays back to its baseline. In other words,

presynaptic spikes in the LIF model have a purely local ef-

fect in time, unlike in the nLIF model, where only the onset

of a PSP is localized in time, but the postsynaptic effect

remains forever, or until the postsynaptic neuron spikes. A

pair of finite time constants thus assigns much more im-

portance to the time differences between input spikes and

introduces discontinuities in the neuronal output that make

an analytical treatment more difficult (Fig. 1b).

First-spike times Our spike-timing-based neural code

follows an idea first proposed in [53]. Unlike coding in

artificial neural networks (ANNs) and different from spike-

count-based codes in spiking neural networks (SNNs), this

scheme explicitly uses the timing of individual spikes for

encoding information. In time-to-first-spike (TTFS) cod-

ing, the presence of a feature in a stimulus is reflected by

the timing of a neuron’s first spike after the onset of the

stimulus , with earlier spikes representing a more strongly

manifested feature. This has the effect that important infor-

mation inherently propagates quickly through the network,

with potentially only few spikes needed for the network to

process an input. Consequently, this scheme enables effi-

cient processing of inputs, both in terms of time-to-solution

and energy-to-solution (assuming the latter depends, in gen-

eral on the total number of spikes and the time required for

the network to solve, e.g., an input classification problem).

In order to formulate the optimization of a first-spike

time T as a gradient-descent problem, we derive an ana-

lytical expression for T . This is equivalent to finding the

time of the first threshold crossing by solving u(T ) = ϑ

for T . Even though there is no general closed-form solution

for this problem, analytical solutions exist for specific cases.

For example, we show that (see Methods)

T = τs

{
b

a1
−W

[
−g`ϑ
a1

exp

(
b

a1

)]}
for τm = τs (2)

and

T = 2τs ln

[
2a1

a2 +
√
a22 − 4a1g`ϑ

]
for τm = 2τs ,

(3)

where W is the Lambert W function and using the

shorthand notations an and b for sums over the set of

causal presynaptic spikes C = {i | ti < T} (see Eqns. (11)

and (12)). We note that, when calculating the output spike

time for a large number of input neurons, determining C

can be computationally intensive (see Methods). One in-

herent advantage of physical emulation is the reduction of

this calculational burden.

The above equations are differentiable with respect to

synaptic weights and presynaptic spike times. As will be

shown in the following, this directly translates to solving

the credit assignment problem and thus allows exact error

propagation through networks of spiking neurons. For eas-

ier reading, we focus on one specific case (τm = τs), but the

others can be treated analogously.

Exact error backpropagation with spikes Learning

in SNNs requires the ability to relate efferent spiking to

both afferent weights and spike times. For the output spike

time of a neuron k with presynaptic partners i, the first re-

lationship can be formally described by the derivative of the

output spike time with respect to the presynaptic weights

(Eqn. (22)). Using certain properties of W, we can find a

simple expression that can, additionally, be made to depend

on the output spike time tk itself:

∂tk
∂wki

= − 1

a1

exp
(
ti
τs

)
W(z) + 1

(tk − ti) , (4)

with a1 and z representing functions of wki and ti as defined

in Eqns. (11) and (18). Using the output spike time as ad-

ditional information optimizes learning in scenarios where

the exact neuron parameters are unknown and the real out-

put spike time differs from the one calculated under ideal

assumptions, as discussed later.
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Second, the capability to relate errors in the output spike

time to errors in the input spike times allows us to recur-

sively propagate changes from neurons to their presynaptic

partners.

∂tk
∂ti

= − 1

a1

exp
(
ti
τs

)
W(z) + 1

wki
τs

(tk − ti − τs) . (5)

Together, Eqns. (4) and (5) effectively and exactly solve the

credit assignment problem in appropriately parametrized

LIF networks of arbitrary architecture.

We can now apply the findings above to study learning in

a layered network. Figure 1c shows a schematic of our feed-

forward networks and their spiking activity. The input uses

the same coding scheme as all other neurons: more promi-

nent features are encoded by earlier spikes. The output of

the network is defined by the identity of the label neuron

that spikes first (Fig. 1d).

We denote by t
(l)
k the output spike time of the kth neuron

in the lth layer; for example, in a network with N layers,

t
(N)
n is the spike time of the nth neuron in the label layer.

The weight projecting to the kth neuron of layer l from the

ith neuron of layer l − 1 is denoted by w
(l)
ki .

To apply the error backpropagation algorithm [15, 17],

we choose a loss function that is differentiable with respect

to synaptic weights and spike times. During learning, the

objective is to maximize the temporal difference between

the correct and all other label spikes. The following loss

function fulfills the above requirements:

L[t(N), n∗] = dist
(
t
(N)
n∗ , t

(N)
n 6=n∗

)
= log

[∑
n

exp

(
− t

(N)
n − t(N)

n∗

ξτs

)]
, (6)

where t(N) denotes the vector of label spike times t
(N)
n , n∗

the index of the correct label and ξ ∈ R+ is a scaling param-

eter. This loss function represents a cross entropy between

the true label distribution and the softmax-scaled label spike

times produced by the network (see Methods). Reducing its

value therefore increases the temporal difference between

the output spike of the correct label neuron and all other

label neurons. Notably, it only depends on the spike time

difference and is invariant under absolute time shifts, mak-

ing it independent of the concrete choice of the experiment

start which defines t = 0. In case of a non-spiking label

neuron we treat its spike time as t
(N)
n = ∞. In this case

however, the equation Eqn. (2) is not defined and neither

are its derivatives. We therefore introduce a simple, local

heuristic to encourage spiking behaviour in large portions

of the network (see Methods). In some scenarios, learning

can be facilitated by the addition of a spike-time-dependent

regularization term (see Methods).

Gradient descent on the loss function Eqn. (6) can now be

easily performed by repeated application of the chain rule.

Using the exact derivatives Eqns. (4) and (5), this yields the

synaptic plasticity rule

∆w
(l)
ki ∝ −

∂L[t(N), n∗]

∂w
(l)
ki

(7)

= − ∂t
(l)
k

∂w
(l)
ki

∂L[t(N), n∗]

∂t
(l)
k︸ ︷︷ ︸

δ
(l)
k

= − ∂t
(l)
k

∂w
(l)
ki

∑
j

∂t
(l+1)
j

∂t
(l)
k

δ
(l+1)
j .

A compact formulation for hierarchical networks that

highlights the backpropagation of errors can be found in

Eqns. (38) to (40). In either form, only the label layer error

and the neuron spike times are required for training, which

can either be calculated using Eqn. (2) or by simulating (or

emulating) the LIF dynamics (Eqn. (1)).

The computational complexity of the synaptic plasticity

rule – a potential limiting factor for on-chip implementa-

tions – can be drastically reduced by appropriate approxi-

mations. In the Supplementary Information SI.D we present

early results using such an approach. Note that the simplifi-

cation is only used in Supplementary Information SI.D and

all other results we report in the following were produced

using the full analytical equations Eqns. (4) and (5).

Simulations After deriving the learning algorithm in the

previous chapter, we show its classification capabilities in

software simulations. In these simulations we demonstrate

successful learning and provide a baseline for the hardware

emulations that follow.

We use two data sets that emphasize different aspects of

interesting real-world scenarios.

As an example for low-dimensional, “continuous” data

spaces, in which points belonging to different classes can

be arbitrarily close together (thus making separation par-

ticularly challenging), we chose the Yin-Yang data set [65].

For higher-dimensional, discrete input, we used the MNIST

data set [66] as a small-scale image classification scenario.

The results in this section are based on Eqn. (2) for calcu-

lating the spike times in the forward pass, and Eqn. (40) for

calculating weight updates; for details regarding implemen-

tation see Methods. For hyperparameters of the discussed

experiments see Tables A and B.

Yin-Yang classification task: The first data set consists of

points in the yin-yang figure (Fig. 2a). Each point is defined

by a pair of Cartesian coordinates (x, y) ∈ [0, 1]2. To build

in redundancy and capture the intrinsic symmetry of the
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Figure 2: Classification of the Yin-Yang data set. (a) Illustration of the Yin-Yang data set. The samples are separated into three classes,
Yin ( ), Yang ( ) and Dot ( ). The yellow symbols ( , , ) mark samples for which the training process is illustrated in (b). The input times tx
and ty correspond to the spike time of the inputs associated with the x and y coordinates of individual samples. (b) Training mechanism for three
exemplary data samples (cf. (a)). For the first three rows, the left and middle columns depict voltage dynamics in the label layer before and after
training for 300 epochs, respectively. The voltage traces of the three label neurons are color-coded according to their corresponding class as in (a).
Before training, the random initialization of the weights causes the label neurons to show similar voltage traces and almost indistinguishable spike
times. After training there is a clear separation between the spike time of the correct label neuron and all others, with the correct neuron spiking
first. The evolution of the label spike times during training is shown in the right column for the first 70 epochs. Bottom row: spike histograms
over all training samples. Our learning algorithm induces a clear separation between the spike times of correct and wrong label neurons. (c)
Training progress (validation loss as given in Eqn. (6) and error rate) over 300 epochs for 20 training runs with random initializations (gray). The
run shown in panels b and d-f is plotted in blue. (d) Classification result on the test set (1000 samples). The color of each sample indicates the
class determined by the trained network. The wrongly classified samples (marked with black X) all lie very close to the border between classes.
(e) Spike times of the Yin, Yang and Dot neurons for all test samples after training. For each sample, spike times were normalized by subtracting
the earliest spike time in the label layer. Bright yellow denotes zero difference, i.e., the respective label neuron was the first to spike and the
sample was assigned to its class. The bright yellow areas resemble the shapes of the Yin, Yang and Dot areas, reflecting the high classification
accuracy after training. (f) Confusion matrix for the test set after training.

yin-yang motive, the data set is augmented with mirrored

coordinates (1−x, 1−y) enabling networks of neurons with-

out trainable bias to learn the task [65]. The three classes

are labeled as per the respective area they occupy, i.e., Yin,

Yang or Dot. This augmented data set was specifically de-

signed to require latent variables for classification: a shallow

non-spiking classifier reaches (64.3 ± 0.2)% test accuracy,

an ANN with one hidden layer of size 120 typically around

(98.7 ± 0.3)%. Due to this large gap, our Yin-Yang data

set represents an expressive test of error backpropagation

in our hierarchical spiking networks. At the same time, it

can be learned by networks that are compatible in size with

the current revision of BrainScaleS-2 [67].

After translation of the four features to spike times (see

Fig. 1 and Methods for more details), they were joined with

a bias spike at fixed time, and these five spikes served as in-

put to a network with 120 hidden and 3 label neurons. We

illustrate the training mechanism with voltage traces for

three samples belonging to different classes (Fig. 2b). The

algorithm changes the weights to create a separation in the

label spike times (cf. left and middle column) that corre-

sponds to correct classification. Note that the voltage traces

were just recorded for illustration, as only spike times are

required for calculating weight updates. After 300 epochs

our networks reached (95.9±0.7)% test accuracy for training

with 20 different random seeds (Fig. 2c). The classification

failed only for samples that were extremely close to the bor-

der between two classes (Fig. 2d). Figure 2e shows the spike

times of the label neurons. These vary continuously for in-

puts belonging to other classes, but drop abruptly at the

boundary of the area belonging to their own class, which

denotes a clear separation – see, for example, the abrupt

change from red (late spike time) to yellow (early spike time)

of the Yin-neuron when moving from Yang to Yin (Fig. 2e,
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Figure 3: Classification of the MNIST data set. (a) Training
progress of a network over 150 epochs for 10 different random initial-
izations. The run drawn in blue is the one which produced the results
in (b). (b) Confusion matrix for the test set after training.

MNIST classification task: To study the scalability of our

approach to larger and more high-dimensional data sets, we

applied it to the classification of MNIST handwritten digits

[66]. Figure 3 shows training results for networks with 784-

350-10 neurons, where pixel intensities were translated to

spike times. During training, noise was added to the input

samples to aid generalization, but no bias spikes were used.

As seen in Fig. 3a, training converges for 10 different initial

random seeds, reaching a final test accuracy of (97.1±0.1)%.

Similar results are also achieved for deeper architectures

with multiple hidden layers (see Table SI.B1 for additional

simulation runs with different network architectures).

For reference, we consider several other results obtained

with spiking-time coding. In Mostafa [53], a maximum test

accuracy of 97.55% using a network with a hidden layer of

800 neurons is reported; note that this work uses non-leaky

neurons with effectively infinite membrane memory. Also

for non-leaky neurons, but using an approximative approach

for calculating gradients, Kheradpisheh & Masquelier [54]

report 97.4% using 400 hidden neurons. In Comsa et al.

[68], a maximum test accuracy of 97.96% was achieved using

340 hidden neurons, supported by a regular spike grid and

extensive hyperparameter search.

We note that there also exist trial-averaging and spike-

count-based approaches that have the benefit of more

straight-forward learning rules, but these approaches sac-

rifice precision, neuronal real-estate or time-to-solution in

comparison to frameworks based on the precise timing of

single output spikes.

For example, Esser et al. [61] report 92.7% using 512 neu-

rons, while Tavanaei et al. [69] require 1000 hidden neurons

to achieve 96.6%.

Fast neuromorphic classification In our framework,

the time to solution is a function of the network depth and

the time constants τm and τs. Assuming typical biologi-

cal timescales, most input patterns in the above scenario

are classified within several milliseconds. By leveraging the

speedup of neuromorphic systems such as BrainScaleS [46,

67], with intrinsic acceleration factors of 103 to 104, the

same computation can be achieved within microseconds. In

the following, we present an implementation of our frame-

work on BrainScaleS-2 and discuss its performance in con-

junction with the achieved classification speed and energy

consumption. For a proof-of-concept implementation on its

predecessor BrainScaleS-1, we refer to Supplementary In-

formation SI.A.

The advantages of such a neuromorphic implementation

come at the cost of reduced control. Training needs to cope

with phenomena such as spike jitter, limited weight range

and granularity, as well as neuron parameter variability,

among others. In general, an important aspect of any theory

aiming for compatibility with physical substrates, be they

biological or artificial, is its robustness to substrate imper-

fections; our results on BrainScaleS-2 implicitly represent

a powerful demonstration of this property. To further sub-

stantiate the generalizability of our algorithm to different

substrates, we complement our experimental results with

a simulation study of various substrate-induced distortive

effects.

Learning on BrainScaleS-2: BrainScaleS-2 is a mixed-

signal accelerated neuromorphic platform with 512 phys-

ical neurons, each being able to receive inputs via 256

configurable synapses. These neurons can be coupled to

form larger logical neurons with a correspondingly increased

number of inputs. At the heart of each neuron is an analog

circuit emulating LIF neuronal dynamics with an accelera-

tion factor of 103 to 104 compared to biological timescales.

Due to variations in the manufacturing process, the real-

ized circuits systematically deviate from each other (fixed-

pattern noise). Although these variations can be reduced by

calibrating each circuit [72], considerable differences remain

(standard deviation on the order of 5 % on BrainScaleS-2)

and pose a challenge for possible neuromorphic algorithms

– along with other features of physical model systems such

as spike time jitter or spike loss [33, 34, 63, 73].

The chip’s synaptic arrays were configured to support ar-

bitrary fully-connected networks of up to 256 emulated neu-

rons with a maximum of 256 inputs per neuron. Each such

logical connection was realized via two physical synapses

in order to allow transitions between an excitatory and an

inhibitory regime. Synaptic weights on the chip are config-

urable with 6 bit precision. More details about our setup

can be found in the Methods section.

We used an in-the-loop training approach [23, 33, 74],

where inference runs emulated on the neuromorphic sub-
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Figure 4: Classification on the BrainScaleS-2 neuromorphic platform. (a) Photograph of a BrainScaleS-2 chip. (b-e) Yin-Yang data
set (b) Training progress over 200 epochs for 11 different random initializations. The run drawn in blue also produced the results shown in panel
(b-d). (c) Confusion matrix for the test set after training. (d) Classification result on the test set. For each input sample the color indicates the
class determined by the trained network. Wrong classifications are marked with a black X. The wrongly classified samples all lie very close to
the border between two classes. (e) Separation of label spike times (cf. Fig. 2e). For each of the label neurons, bright yellow dots represent data
samples for which it was the first to spike, thereby assigning them its class. Similarly to the software simulations, the bright yellow areas align
well with the shapes of the Yin, Yang and Dot areas of the data set. (f-h) MNIST data set (f) Evolution of training over 50 epochs for 10
different random initializations. The run drawn in blue is the one which produced the results shown in panel (g) and (h). (g) Confusion matrix
for the test set after training. (h) Exemplary membrane voltage traces on BrainScaleS-2 after training. Each panel shows color-coded voltage
traces of four label neurons for one input that was presented repeatedly to the network (inlays show the input and its correct class). Each trace
was recorded four times to point out the trial-to-trial variations.

strate were interleaved with host-based weight update cal-

culations. For emulating the forward pass, the spike times

for each sample in a mini-batch were joined sequentially into

one long spike train and then injected into the neuromor-

phic system via a field-programmable gate array (FPGA).

The latter was also used to record the spikes emitted by the

hidden and label layers.

Figure 4a-d shows the results of training a spiking network

with 120 hidden neurons on BrainScaleS-2 on the Yin-Yang

data set. The system quickly learned to discriminate be-

tween the presented patterns, with an average test accuracy

of (95.0± 0.9)%.

The hardware emulation performs similarly to the soft-

ware simulations (Fig. 2), with the wrong classifications still

only happening along the borders of the areas with different

labels (Fig. 4c). The remaining difference in performance

after training is attributable to the substrate variability (cf.

also Fig. 4h). Considering that one of the specific challenges

built into the Yin-Yang data set resides in the continuity of

its input space and abrupt class switch between bordering

areas, this result highlights the robustness of our approach.

To classify the MNIST data set using the BrainScaleS-2

system, we emulated and trained a network of size 256-246-

10 (Fig. 4f-h). Due to the restrictions imposed by the hard-

ware on the input dimensionality, we used downsampled

images of 16× 16 pixels. Across multiple initializations, we

achieved a test accuracy of (96.9 ± 0.1)%; similarly to the

Yin-Yang data set, this is only slightly lower than in soft-

ware simulations of equally sized networks (Table 2). As

shown in Table 2, about one third of the loss in accuracy is

due to the downsampling of the data, with the remainder

being caused by the variability of the substrate. The abil-

ity of our framework to achieve reliable classification de-

spite such substrate-induced distortions is well-illustrated

by post-training membrane dynamics measured on the chip

Fig. 4h. In all cases shown here, the correct label neuron

spikes before 10 µs and is clearly separable from all other

label neurons.

Due to its short intrinsic time constants and overall

energy efficiency, the BrainScaleS-2 system enables very

fast and energy-efficient acquisition of classification results.

Classification of the 10 000 MNIST test samples takes a total

of 0.937 s, including data transmission, emulation of dynam-

ics and return of the classification results. The total time

on the BrainScaleS-2 chip was 480 µs, a detailed breakdown

of the execution time is shown in Supplementary Informa-

tion SI.E. The power consumption of the chip, measured

during runtime, including all chip components needed for

spike generation and processing (i.e., excluding the host and

FPGA) amounted to 175 mW. For measurement details and
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Table 1: Comparison of pattern recognition models on the MNIST data set emulated on neuromorphic back-ends, sorted by classification speed.
For reference, an ANN running on GPU is included in the top row. Note that we include only references which present measurements for both
energy and throughput in addition to accuracy. An extended table containing results with partial or estimated measurements can be found in
Supplementary Information, Table SI.F1.

platform type technology coding
input network data augmentation/ energy per classifications test

reference
resolution size/structure regularization classification per second1 accuracy

Nvidia Tesla P100 digital 14 nm ANN 28× 28 CNN2 dropout 852 µJ 125 000 99.2 % see SI.E.2

SpiNNaker digital 130 nm rate 28× 28 784-600-500-10 noisy input encoding 3.3 mJ 91 95.0 % [70], 2015

True North digital 28 nm rate 28× 28 CNN noisy input encoding 0.27 µJ 1000 92.7 % [61], 2015

True North digital 28 nm rate 28× 28 CNN noisy input encoding 108 µJ 1000 99.4 % [61], 2015

unnamed (Intel) digital 10 nm temporal (28× 28)3 236-20 stochastic spike loss 17.1 µJ 6250 89.0 % [71], 2018

BrainScaleS-2 mixed 65 nm temporal 16× 16 256-246-10 input noise 8.4 µJ 20 800 96.9 %
this work,

see also SI.E.1

1 Note that some of the platforms achieve a high number of classifications per second simply by processing a large number of samples in parallel,
while other platforms rely on the sequential (but fast) processing of individual samples.

2 Standard architecture given as an example in the PyTorch repository, for details see Supplementary Information SI.E.2.
3 The 28× 28 image is preprocessed using 5× 5 Gabor-filters and 3× 3 pooling before being sent into the chip.

scalability considerations we refer to Supplementary Infor-

mation SI.E. This results in an average energy consumption

of 8.4 µJ per classification. For a comparison to other neu-

romorphic platforms, we refer to Table 1.

Note that the networks on the other neuromorphic plat-

forms differ in their architectures, coding schemes and train-

ing methods, and while we list some of these differences in

the table, a direct comparison in terms of individual num-

bers remains difficult.

This table only includes references in which measure-

ments for both classification rate and energy are reported.

A more comprehensive overview, including studies that lack

some of the above measurements, can be found in the Sup-

plementary Information, Table SI.F1.

Our current experimental setup leaves room for signif-

icant optimization. For an estimation of possible im-

provements and their potential effect on classification rate

and energy consumption, we refer to Supplementary In-

formation SI.E and [74]. With these improvements we

expect to increase the classification rate by up to a fac-

tor of four while simultaneously decreasing the energy-per-

classification value by up to a factor of 3.

Robustness of time-to-first-spike learning As noted

earlier, a learning scheme operating only on spike times com-

bined with our coding represents a natural fit for neuromor-

phic hardware, both for requiring commonly accessible ob-

servables (i.e., spike times, as opposed to, e.g., membrane

potentials or synaptic currents) and due to its intrinsic ef-

ficiency, as it emphasizes few and early spikes. An impor-

tant indicator of a model’s feasibility for neuromorphic em-

ulation is its robustness towards substrate-induced distor-

tions. By experimentally demonstrating its capabilities on

BrainScaleS-2, we have implicitly provided one substantive

data point for our framework. Here, we present a more

Table 2: Summary of the presented results. Accuracies are given
as mean value and standard deviation. For comparison, on the Yin-
Yang data set a linear classifier achieves (64.3± 0.2) % test accuracy,
while a (non-spiking, not particularly optimized) ANN with 120 hidden
neurons achieves (98.7± 0.3) %. As a reference for the MNIST data
set we trained a 784-350-10 fully connected ANN which reached an
average test accuracy of (98.2± 0.1) %. The results in this table were
obtained without extensive hyperparameter tuning.

data set
hidden accuracy [%]
neurons test train

Yin-Yang

in SW 120 95.9± 0.7 96.3± 0.7
on HW 120 95.0± 0.9 95.3± 0.7

MNIST

in SW 350 97.1± 0.1 99.6± 0.1
in SW (τs = 2τm) 350 97.2± 0.1 99.7± 0.1

MNIST 16×16

in SW 246 97.4± 0.2 99.2± 0.1
on HW 246 96.9± 0.1 98.2± 0.1
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comprehensive study of the robustness of our approach.

Most physical neuronal substrates have several forms of

variability in common [75, Chapter 5]. In both digital and

mixed-signal systems, synaptic weights are typically limited

in both range and resolution. Additionally, parameters of

analog neuron and synapse circuits exhibit a certain spread.

To study the impact of these effects, we included them in

software simulations of our model applied to the Yin-Yang

classification task.

In this context, we highlight the importance of a detail

mentioned in the derivation of Eqn. (4). The output spike

time given in Eqn. (2) depends only on neuron parame-

ters, presynaptic spike times and weights, thus its deriva-

tives share the same dependencies (Eqns. (22) and (23)).

With some manipulations, the equation for the actual out-

put spike time can be inserted (Eqns. (24) and (25)), pro-

ducing a version of the learning rule that directly depends

on the output spike time itself. This version thus allows the

incorporation of additional information gained in the for-

ward pass and is therefore expected to be significantly more

stable, which is confirmed below.

Using dimensionless weight units (scaled by the inverse

threshold), we observe that an upper weight limit of ap-

proximately 3 is sufficient for achieving peak performance

(Figure 5a). This weight value is equivalent to a PSP that

covers the distance between leak potential and firing thresh-

old.

If this is not achievable within the typical parametrization

range of a neuromorphic chip, the effective maximum weight

to the hidden layer can be increased by multiplexing each

input into the network (cf. Methods).

In the experiments with limited weight resolution (both

in software and on hardware), a floating-point-precision

“shadow” copy of synaptic weights was kept in memory.

The forward and backward pass used discretized weight val-

ues, while the calculated weight updates were applied to

the shadow weights [76]. Our model shows approximately

constant performance for weight resolutions down to 5 bit,

followed by gradual degradation below (Figure 5b).

Interestingly, adding variability to the synapse and mem-

brane time constants has no discernible effects (Figure 5c).

This is a direct consequence of having used the true out-

put spike times for the learning rule in the backward pass.

A comparison to “naive” gradient descent without this in-

formation is shown in (Figure 5d). These simulations show

that the algorithm can be expected to adequately cope with

a large amount of fixed-pattern noise on the time constants

if the mean of the distributions for τm and τs match reason-

ably well with the values assumed by the learning rule (up

to 10-20% difference).

Additionally, in Supplementary Information SI.C we in-

vestigate trained networks regarding their robustness to

adverse effects that appear only after training, such as

temperature-induced parameter variations or inactivation

of neurons. Our simulations show that trained networks

can cope with such effects, suggesting that our training al-

gorithm develops network structures robust even to distor-

tions not present during training.

Finally, we note that all of the effects addressed above also

have biological correlates. While not directly reflecting the

variability of biological neurons and synapses, our simula-

tions do suggest that biological variability does not present

a fundamental obstacle to our form of TTFS computation.
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a

Figure 5: Effects of substrate imperfections. Modeled con-
straints were added artificially into simulated networks. All panels
show median, quartiles, minimum, and maximum of the final test accu-
racy on the Yin-Yang data set for 20 different initializations. (a) Lim-
ited weight range. The weights were clipped to the range [−wclip, wclip]
during training and evaluation. The triangle, square and circle mark
the clip values that are used in panel (b). (b) Limited weight resolu-
tion. For the three weight ranges marked in (a) the weight resolution
was reduced from a double precision float value down to 2 bits. Here,
n-bit precision denotes a setup where the interval [−wclip, wclip] is dis-
cretized into 2 · 2n − 1 samples (n weight bits plus sign). (c) Time
constants with fixed-pattern noise. For these simulations each neuron
received a random τs and τm independently drawn from the distri-
bution N(τ̄s, στs/m ). This means that the ratio of time constants was

essentially never the one assumed by the learning rule. (d) Systematic
shift between time constants. Here τs was drawn from N(τ̄s, στs/m )

while τm was drawn from N(τ̄m, στs/m ) for each neuron for varying
mean τ̄m and fixed στs/m = 0.1τ̄s. The orange curve illustrates a
training where the backward pass performs “naive” gradient descent,
without using explicit information about output spike times. The blue
curve, as all other panels, has the output spike time as an observable.
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Discussion

We have proposed a model of first-spike-time learning that

builds on a rigorous analysis of neuro-synaptic dynam-

ics with finite time constants and provides exact learning

rules for optimizing first-spike times. The resulting form of

synaptic plasticity operates on pre- and postsynaptic spike

times and effectively solves the credit assignment problem in

spiking networks; for the specific case of hierarchical feedfor-

ward topologies, it yields a spike-based form of error back-

propagation. In this manuscript, we have applied this algo-

rithm to networks with one and two hidden layers. Given

the reported results, we are confident that our approach

scales to even larger and deeper networks.

While TTFS coding is an exceptionally appealing

paradigm for reasons of speed and efficiency, our approach is

not restricted to this particular coding scheme. Our learn-

ing rules enable a rigorous manipulation of spike times and

can be used for a variety of loss functions that target other

relationships between spike timings. The time-to-first-spike

scenario studied here merely represents the simplest, yet

arguably also the fastest and most efficient paradigm for

spike-based classification of static patterns. Additionally,

our derived theory is applicable to more complex, e.g., re-

current, network structures and multi-spike coding schemes

which are needed for processing temporal data streams.

First-spike coding schemes are particularly relevant in the

context of biology, where decisions often have to be taken

under pressure of time. The action to be taken in response

to a stimulus can be considerably sped up by encoding it

in first-spike times. In turn, such fast decision making on

the order of ∼100 ms [42, 43] will have a particularly sen-

sitive dependence on exact spike times and thus require a

corresponding precision of parameters.

At first glance, demands for precision appear at odds with

the imperfect, variable nature of microscopic physical sub-

strates, both biological and artificial. We met this challenge

by incorporating output spike times directly into the back-

ward pass. With this, the theoretical requirement of exact

ratios of membrane to synaptic time constants is signifi-

cantly softened, which greatly extends the applicability of

our framework to a wide range of substrates, including, in

particular, BrainScaleS-2.

By requiring only spike times, the proposed learning

framework has minimal demands for neuromorphic hard-

ware and becomes inherently robust towards substrate-

induced distortions. This further enhances its suitability

for a wide range of neuromorphic platforms.

Bolstered by the design characteristics of the

BrainScaleS-2 system, our implementation achieves a

time-to-classification of about 10 µs after receiving the

first spike. Including relaxation between patterns and

communication, the complete MNIST test set with 10 000

samples is classified in less than 1 s with an energy con-

sumption of about 8.4 µJ per classification, which compares

favorably with other neuromorphic solutions for pattern

classification. The time characteristics of this implemen-

tation do not deteriorate for increased layer sizes because

neurons communicate asynchronously and their dynamics

are emulated independently. For the current incarnation of

BrainScaleS-2, an increase in spiking activity only has a

negligible effect on power consumption. Furthermore, for

larger numbers of neurons we would expect only a weak

increase of the power drain.

We also stress that, in contrast to, e.g., GPUs, our sys-

tem was used to process input data sequentially. Our re-

ported classification speed is thus a direct consequence of

our coding scheme combined with the system’s accelerated

dynamics. Further increasing the throughput by paralleliza-

tion (simultaneously using multiple chips) is straightforward

and would not affect the required energy per classification.

Due to the complexity of our exact gradient-based rules,

our hardware networks were trained using updates calcu-

lated off-chip based on emulated spike times. Early, promis-

ing simulations using a significantly simplified learning rule,

however, suggest the possibility of an on-chip implemen-

tation of our framework. Furthermore, we note that our

learning rules require three components that can all be made

available at the locus of the synapse: pre- and post-synaptic

spikes, as in classical spike-timing-dependent plasticity, and

an error term, which could be propagated by mechanisms

such as those proposed in, e.g., [77, 78]. This raises the in-

triguing possibility for our framework to help explain learn-

ing in biological substrates as well.

Since, compared to the von-Neumann paradigm, artificial

brain-inspired computing is only in its infancy, its range of

possible applications still remains an open question. This is

reflected by most state-of-the-art neuromorphic approaches

to information processing, which, in order to accommodate

a wide range of spike-based computational paradigms, aim

for a large degree of flexibility in network topology and

parametrization. Despite the obvious efficiency trade-off of

such general-purpose platforms, we have shown that an em-

bedded version of our framework can achieve a powerful

combination of performance, speed, efficiency and robust-

ness. This gives us confidence that a more specialized neuro-

morphic implementation of our model represents a competi-

tive alternative to current solutions based on von-Neumann

architectures, especially in edge computing scenarios.
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Methods

Preliminaries In this section we derive the equations

from the main manuscript, starting with the learning rule

for τm → ∞, then τm = τs, Eqn. (2) and finally τm = 2τs,

Eqn. (3). The case τm → ∞ has already been discussed in

Mostafa [53] and was reproduced here for completeness and

comparison. Due to the symmetry in τm and τs of the PSP

(Eqn. (14)), the τm = 2τs case describes the τm = 1
2τs case

as well.

For each, a solution for the spike time T , defined by

u(T ) = ϑ, (8)

has to be found, given LIF dynamics

u(t) =
1

Cm

τmτs
τm − τs

∑
spikes ti

wiκ(t− ti) , (9)

κ(t) = θ(t)

[
exp

(
− t

τm

)
− exp

(
− t

τs

)]
, (10)

with membrane time constant τm = Cm/g` and the PSP

kernel κ given by a difference of exponentials. Here we al-

ready assumed our TTFS use case in which each neuron only

produces one relevant spike and the second sum in Eqn. (1)

reduces to a single term.

For convenience, we use the following definitions

an :=
∑
i∈C

wi exp

(
ti
nτs

)
, (11)

b :=
∑
i∈C

wi
ti
τs

exp

(
ti
τs

)
, (12)

with summation over the set of causal presynaptic spikes

C = {i | ti < T}.
In practice, this definition of the causal set C is not a

closed-form expression because the output spike time T

depends explicitly on C. However, it can be computed

straightforwardly by iterating over the ordered sets of in-

put spike times (for n presynaptic spikes there are n sets C̃i
each comprising of the i first input spikes). For each set C̃i
one calculates an output spike time Ti and determines if this

happens later than the last input of this set and before the

next input (the i+ 1th input spike). The earliest such spike

Ti is the actual output spike time and the corresponding C̃i
is the correct causal set. If no such causal set C̃i exists, the

neuron did not spike and we assign it the spike time T =∞.

nLIF learning rule for τm → ∞ With this choice of

τm, the first term in Eqn. (10) becomes 1 and we recover

the nLIF case discussed in [53]. Given the existence of an

output spike, in Eqn. (8) the spike time T appears only in

one place and simple reordering yields

T

τs
= ln

[
a1

a∞ − ϑCm/τs

]
, (13)

where we used Eqn. (11) for n = 1 and n = ∞, the latter

being the sum over the weights.

Learning rule for τm = τs According to l’Hôpital’s rule,

in the limit τm → τs Eqn. (9) becomes a sum over α-

functions of the form

u(t) =
1

Cm

∑
i

wiθ(t− ti) · (t− ti) exp

(
− t− ti

τs

)
. (14)

Using these voltage dynamics for the equation of the spike

time Eqn. (8), together with the definitions Eqns. (11)

and (12) and τm = Cm/g`, we get the equation

0 = g`ϑ exp

(
T

τs

)
+ b− a1

T

τs︸ ︷︷ ︸
=:y

. (15)

The variable y is introduced to bring the equation into the

form

h exp (h) = z (16)

which can be solved with the differentiable Lambert W func-

tion h =W(z). The goal is now to bring Eqn. (15) into this

form, this is achieved by reformulation in terms of y

0 = g`ϑ exp

(
b

a1

)
exp

(
− y

a1

)
+ y (17)

y

a1︸︷︷︸
=: h

exp

(
y

a1

)
= −g`ϑ

a1
exp

(
b

a1

)
︸ ︷︷ ︸

=: z

. (18)

With the definition of the Lambert W function the spike

time can be written as

T

τs
=

b

a1
−W

[
−g`ϑ
a1

exp

(
b

a1

)]
. (19)

Branch choice: Given that a spike happens, there will

be two threshold crossings: One from below at the actual

spike time, and one from above when the voltage decays

back to the leak potential (Fig. Aa,b). Correspondingly,

the Lambert W function (Fig. Ac,d) has two real branches

(in addition to infinite imaginary ones), and we need to

choose the branch that returns the earlier solution. In case

the voltage is only tangent to the threshold at its maximum,

the Lambert W function only has one solution.

For choosing the branch in the other cases we need to
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Figure A: (a) Membrane dynamics for one strong input spike at
ti (upward arrow) with two threshold crossings due to leak pullback
(earlier violet, later brown). The change induced by a reduction of the
input weight is shown in red. (b) Edge case without crossing and ex-
actly one time where u(t) = ϑ. (c) Defining relation for the Lambert
W functionW, evidently not an injective map. (d) Distinguishing be-
tween h ≶ −1 allows to define the inverse function of (c), the Lambert
W function W.

look at h from the definition, i.e.

h =
y

a1
=

b

a1
− T

τs
. (20)

In a setting with only one strong enough input spike, the

summations in an and b reduce to yield h = (ti − T )/τs.

Because the maximum of the PSP for τm = τs occurs at

ti + τs, we know that the spike must occur at T ≤ ti + τs
and therefore

−1 ≤ ti − T
τs

= h. (21)

This corresponds to the branch cut of the Lambert W func-

tion meaning we must choose the branch with h ≥ −1. For

a general setting, if we know a spike exists, we expect an
and b to be positive. In order to get the earlier thresh-

old crossing, we need the branch that returns the larger W
(Fig. Ad), that is where W = h > −1.

Derivatives: The derivatives for ti in the causal set i ∈ C
come down to

∂T

∂wi
(w, t) (22)

=
τs
a1

exp

(
ti
τs

)[
zW ′(z) +

(
ti
τs
− b

a1

)
(1− zW ′(z))

]
,

∂T

∂ti
(w, t) (23)

=
wi
a1

exp

(
ti
τs

)[
1 +

(
ti
τs
− b

a1

)
(1− zW ′(z))

]
.

A crucial step is to reinsert the definition of the spike time

where it is possible (cf. Fig. 5d). For this we need the

derivative of the Lambert W function zW ′(z) = W(z)
W(z)+1

that follows from differentiating its definition Eqn. (16) with

h = W(z) with respect to z. With this equation one can

calculate the derivative of Eqn. (19) with respect to incom-

ing weights and times as functions of presynaptic weights,

input spike times and output spike time:

∂T

∂wi
(w, t, T ) = − 1

a1

1

W(z) + 1
exp

(
ti
τs

)
(T − ti) , (24)

∂T

∂ti
(w, t, T ) = − 1

a1

1

W(z) + 1
exp

(
ti
τs

)
wi
τs

(T − ti − τs) .

(25)

These equations are equivalent to the Eqns. (4) and (5)

shown in the main text.

Learning rule for τm = 2τs Inserting the voltage

(Eqn. (9)) into the spike time (Eqn. (8)) yields

g`ϑ = exp

(
− T

τm

)∑
i∈C

wi exp

(
ti
τm

)
− (26)

exp

(
−T
τs

)∑
i∈C

wi exp

(
ti
τs

)
.

Reordering and rewriting this in terms of a1, a2, and τs
(with τm = 2τs) we get

0 = −a1
[
exp

(
− T

2τs

)]2
+ a2 exp

(
− T

2τs

)
− g`ϑ . (27)

This is written such that its quadratic nature becomes ap-

parent, making it possible to solve for exp(−T/2τs) and thus

T

τs
= 2 ln

[
2a1

a2 +
√
a22 − 4a1g`ϑ

]
. (28)

Branch choice: The quadratic equation has two solutions

that correspond to the voltage crossing at spike time and

relaxation towards the leak later; again, we want the earlier

of the two solutions. It follows from the monotonicity of the

logarithm that the earlier time is the one with the larger

denominator. Due to an output spike requiring an excess of

recent positively weighted input spikes, an are positive, and

the + solution is the correct one.

Derivatives: Using the definition x =
√
a22 − 4a1g`ϑ for
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brevity, the derivatives of Eqn. (28) are

∂T

∂wi
(w, t) (29)

= 2τs

[
1

a1
+

2g`ϑ

(a2 + x)x

]
exp

(
ti
τs

)
− 2τs

x
exp

(
ti

2τs

)
,

∂T

∂ti
(w, t) (30)

= 2wi

[
1

a1
+

2g`ϑ

(a2 + x)x

]
exp

(
ti
τs

)
− wi

x
exp

(
ti

2τs

)
.

Again, inserting the output spike time yields

∂T

∂wi
(w, t, T ) (31)

=
2τs
a1

[
1 +

g`ϑ

x
exp

(
T

2τs

)]
exp

(
ti
τs

)
− 2τs

x
exp

(
ti

2τs

)
,

∂T

∂ti
(w, t, T ) (32)

=
2wi
a1

[
1 +

g`ϑ

x
exp

(
T

2τs

)]
exp

(
ti
τs

)
− wi

x
exp

(
ti

2τs

)
.

Error backpropagation in a layered network Our

goal is to update the network’s weights such that they min-

imize the loss function L[t(N), n∗]. For weights projecting

into the label layer, updates are calculated via

∆w
(N)
ni ∝ −

∂L[t(N), n∗]

∂w
(N)
ni

= − ∂t
(N)
n

∂w
(N)
ni

∂L[t(N), n∗]

∂t
(N)
n

. (33)

The weight updates of deeper layers can be calculated iter-

atively by application of the chain rule:

∆w
(l)
ki ∝ −

∂L[t(N), n∗]

∂w
(l)
ki

= − ∂t
(l)
k

∂w
(l)
ki

δ
(l)
k , (34)

where the second term is a propagated error that can be

calculated recursively with a sum over the neurons in layer

(l + 1):

δ
(l)
k :=

∂L[t(N), n∗]

∂t
(l)
k

=
∑
j

∂t
(l+1)
j

∂t
(l)
k

δ
(l+1)
j . (35)

In the following we treat the τm = τs case but the cal-

culations can be performed analogously for the other cases.

Rewriting Eqns. (24) and (25) in a layer-wise setting, the

derivatives of the spike time for a neuron k in arbitrary layer

l are

∂t
(l)
k

∂w
(l)
ki

(w, t(l−1), t(l)) (36)

= − 1

a1
exp

(
t
(l−1)
i

τs

)
1

W(z) + 1

(
t
(l)
k − t

(l−1)
i

)
,

∂t
(l)
k

∂t
(l−1)
i

(w, t(l−1), t(l)) (37)

= − 1

a1
exp

(
t
(l−1)
i

τs

)
1

W(z) + 1

w
(l)
ki

τs

(
t
(l)
k − t

(l−1)
i − τs

)
.

Inserting Eqns. (35) to (37) into Eqns. (33) and (34) yields

a synaptic learning rule which implements exact error back-

propagation on spike times.

This learning rule can be rewritten to resemble the stan-

dard error backpropagation algorithm for ANNs:

δ(N) =
∂L

∂t(N)
, (38)

δ(l−1) =

(
B̂

(l) − 1

)
� ρ(l−1) �

(
w(l),T δ(l)

)
, (39)

∆w(l) = −ητs
(
δ(l)ρ(l−1),T

)
� B̂(l)

, (40)

where � is the element-wise product, the T -superscript de-

notes the transpose of a matrix and δ(l−1) is a vector con-

taining the backpropagated errors of layer (l − 1). The in-

dividual elements of the tensors above are given by

ρ
(l)
i = − 1

a1
exp

(
t
(l)
i

τs

)
1

W(z) + 1
, (41)

B̂
(l)
ki =

t
(l)
k − t

(l−1)
i

τs
. (42)

BrainScaleS-2 The application-specific integrated cir-

cuit (ASIC) is built around an analog neuromorphic core

which emulates the dynamics of neurons and synapses. All

state variables, such as membrane potentials and synap-

tic currents, are physically represented in their respective

circuits and evolve continuously in time. Considering the

natural time constants of such integrated analog circuits,

this emulation takes place at 1000-fold accelerated time

scales compared to the biological nervous system. One

BrainScaleS-2 chip features 512 adaptive exponential leaky

integrate-and-fire (AdEx) neurons, which can be freely con-

figured; these circuits can be restricted to LIF dynamics as

required by our training framework [79]. Both the mem-

brane and synaptic time constants were calibrated to 6 µs.

Each neuron circuit is connected to one of four synapse

matrices on the chip, and integrates stimuli from its col-
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umn of 256 CuBa synapses [59]. Each synapse holds a 6 bit

weight value; its sign is shared with all other synapses lo-

cated on the same synaptic row. The presented training

scheme, however, allows weights to continuously transition

between excitation and inhibition. We therefore allocated

pairs of synapse rows to convey the activity of single presy-

naptic partners, one configured for excitation, the other one

for inhibition.

Synapses receive their inputs from an event routing mod-

ule allowing to connect neurons within a chip as well as

to inject stimuli from external sources. Events emitted by

the neuron circuits are annotated with a time stamp and

then sent off-chip. The neuromorphic ASIC is accompanied

by a FPGA to handle the communication with the host

computer. It also provides mechanisms for low-latency ex-

periment control including the timed release of spike trains

into the neuromorphic core. The FPGA is furthermore used

to record events and digitized membrane traces originating

from the ASIC. BrainScaleS-2 only permits recording one

membrane trace at a time. Each membrane voltage shown

in Fig. 4h therefore originates from a different repetition of

the experiment.

The ASIC is controlled by a layered software stack [80]

which exposes the necessary interfaces to a high-level user

via Python bindings. These were used in our framework

that is described in the following.

Simulation software Our experiments were performed

using custom modules for the deep learning library

PyTorch [81]. The network module implements layers of

LIF neurons whose spike times are calculated according to

Eqn. (2). This method of determining the spike times of

the neurons is fastest, but also memory-intensive. An alter-

native implementation integrates the dynamical equations

of the LIF neurons in a layer, which also yields the neuron

spike times. Even though both approaches are technically

equivalent, this method is slower and should only be em-

ployed if the computing resources are limited.

The activations passed between the layers during the for-

ward pass are the spike times. The equations describing the

weight updates for the network (Eqn. (40)) are realized in

a custom backward-pass module for the network.

Training and regularization methods In order to

train a given data set using our learning framework, the

input data has to be translated into spike times first. We

do this by defining the times of the earliest and latest pos-

sible input spike tearly and tlate and mapping the range of

input values linearly to the time interval [tearly, tlate].

If the data set requires a bias to be solvable, our frame-

work allows its addition. These bias spikes essentially rep-

resent additional input spikes for a layer, which have the

same spike time for any input. The weights from the neu-

rons to these “bias sources” is learned in the same way as

all the other synaptic weights. For the Yin-Yang data set,

the addition of a bias spike facilitated training. For some

samples, due to the low number of inputs, the relatively low

activity that is received by the network is spread out over

a long time interval. The additional spike in the middle of

the available interval decreases the maximum distance be-

tween input spikes for the hidden layer. In contrast, the

MNIST data set has a much higher input dimensionality

and the spikes are more distributed over the input time in-

terval. Therefore, the activity provided to the hidden layer

at any point in time is high even without additional bias.

Implementing our learning algorithm as custom PyTorch

modules allows us to use the training architecture provided

by the library. The simulations were performed using mini-

batch training in combination with with the Adam opti-

mizer [82] and learning rate scheduling (the parameters can

be found in Tables A and B).

To assist learning we employ several regularization tech-

niques. The term +α
[
exp

(
t
(N)
n∗ /βτs

)
− 1
]

with scaling pa-

rameters α, β ∈ R+ , can be added to the loss in Eqn. (6).

This regularizer further pushes the correct neuron towards

earlier spike times.

Gaussian noise on the input spike times can be used to

combat overfitting. This proved beneficial for the training

of the MNIST data set.

Weight updates ∆w with absolute value larger than a

given hyperparameter are set to zero to compensate diver-

gence for vanishing denominator in Eqn. (40).

As noted previously, the weight update equations are only

defined for neurons that elicit a spike. To prevent fully

quiescent networks we add a hyperparameter which controls

how many neurons without an output spike are allowed. If

the portion of non-spiking neurons is above this threshold,

we increase the input weights of the silent neurons. In case

of multiple layers where this applies, only the first such layer

with insufficient spikes is boosted. If neurons in a layer are

too inactive multiple times in direct succession, the boost

to the weights increases exponentially.

Training on hardware In principle our training frame-

work can be used to train any neuromorphic hardware plat-

form that (i) can receive a set of input spikes and yield the

output spike times of all neurons in the emulated network

and (ii) can update the weight configuration on the hard-

ware according to the calculated weight updates. In our

framework the hardware replaces the computed forward-

pass through the network. For the calculation of the loss and

the following backward pass, the hardware output spikes are
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treated as if they had been produced by a forward pass in

simulation. The backward pass is identical to pure simula-

tion.

As accessible value ranges of neuron parameters are typ-

ically determined by the hardware platform in use, a trans-

lation factor between the neuron parameters and weights in

software and the parameters realized on hardware needs to

be determined. In our experiments with BrainScaleS-2 the

translation between hardware and software parameter do-

main was determined by matching of PSP shapes and spike

times predicted by a software forward pass to the ones pro-

duced by the chip.

The implicit assumption of having only the first spike

emitted by every neuron be relevant for downstream pro-

cessing can effectively be ensured by using a long enough

refractory period. Since the only information-carrying sig-

nal that is not reset upon firing is the synaptic current,

which is forgotten on the time scale of τs, we found that, in

practice, setting the refractory time τref > τs leads to most

neurons eliciting only one spike before the classification of

a given input pattern.

For training the Yin-Yang data set on BrainScaleS-2, hav-

ing only five inputs proved insufficient due to the combina-

tion of limited weights and neuron variability. We there-

fore multiplexed each logical input into five physical spike

sources, totalling 25 inputs spikes per pattern. Adding fur-

ther copies of the inputs effectively increased the weights for

each individual input. This method has the added benefit of

averaging out some of the effects of the fixed-pattern noise

on the input circuits as multiple of them are employed for

the same task.

Data availability

Data available on request from the authors.

Code availability

Code of the Yin-Yang data set [65] available at https:

//github.com/lkriener/yin_yang_data_set, other code

available on request from the authors.

Table A: Neuron, network and training parameters used to produce
the results in Figs. 2 and 3.

Parameter name Yin-Yang MNIST
Neuron parameters
g` 1.0 1.0
E` 0.0 0.0
ϑ 1.0 1.0
τm 1.0 1.0
τs 1.0 1.0
Network parameters
size input 5 784
size hidden layer 120 350
size output layer 3 10
bias time1 [0.9τs, 0.9τs] no bias
weight init mean1 [1.5, 0.5] [0.05, 0.15]
weight init stdev1 [0.8, 0.8] [0.8, 0.8]
tearly 0.15 0.15
tlate 2.0 2.0
Training parameters
training epochs 300 150
batch size 150 80
optimizer Adam Adam
Adam parameter β (0.9, 0.999) (0.9, 0.999)
Adam parameter ε 10−8 10−8

learning rate 0.005 0.005
lr-scheduler StepLR StepLR
lr-scheduler step size 20 15
lr-scheduler γ 0.95 0.9
input noise σ no noise 0.3
max ratio missing spikes1 [0.3, 0.0] [0.15, 0.05]
max allowed ∆w 0.2 0.2
weight bump value 0.0005 0.005
α 0.005 0.005
ξ 2 0.2 0.2
1 Parameter given layer wise [hidden layer, output

layer].
2 ξ implemented differently in code-base developed by

the authors.
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Table B: Network and training parameters for training on
BrainScaleS-2 used to produce the results in Fig. 4. In contrast to
Table A, the neuron parameters are not given here, as they are deter-
mined by the used chip.

Parameter name Yin-Yang 16×16 MNIST
Network parameters
size input 25 256
size hidden layer 120 246
size output layer 3 10
bias time1 [0.9τs,no bias] no bias
weight init mean1 [0.1, 0.075] [0.01, 0.006]
weight init stdev1 [0.12, 0.15] [0.03, 0.1]
tearly 0.15 0.15
tlate 2.0 2.03

Training parameters
training epochs 400 50
batch size 40 50
optimizer Adam Adam
Adam parameter β (0.9, 0.999) (0.9, 0.999)
Adam parameter ε 10−8 10−8

learning rate 0.002 0.003
lr-scheduler StepLR StepLR
lr-scheduler step size 20 10
lr-scheduler γ 0.95 0.9
input noise σ no noise 0.3
max ratio missing spikes1 [0.3, 0.05] [0.5, 0.5]
max allowed ∆w 0.2 0.2
weight bump value 0.0005 0.005
α 0.005 0.005
ξ 2 0.2 0.2
1 Parameter given layer wise [hidden layer, output layer].
2 ξ implemented differently in code-base developed by the au-

thors.
3 After translation of pixel values to spike times, inputs spikes

with tinput = tlate were not sent into the network.
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Supplementary Information

SI.A Learning with time-to-first-spike
(TTFS) coding on BrainScaleS-1
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Figure SI.A1: Training a spiking network on the wafer-scale
BrainScaleS-1 system. (a) Simple data set consisting of 4 classes
with 7× 7 input pixels. Accuracy (b) and loss (c) during training of
the four pattern data set. (d-g) Evolution of the spike times in the
label layer for the four different patterns. In each, the neuron coding
the correct class is shown with a solid line and in full color. (h) Raster
plot for the second pattern (e, correct class N) after training.

To demonstrate the applicability of our approach to dif-

ferent neuromorphic substrates, we also tested it on the

BrainScaleS-1 system [1]. This version of BrainScaleS has

a very similar architecture to BrainScaleS-2, but its com-

ponent chips are interconnected through post-processing on

their shared wafer (wafer-scale integration). More impor-

tantly for our coding scheme and learning rules, its circuits

emulate conductance-based (CoBa) instead of current-based

(CuBa) neurons. Furthermore, due to the different fab-

rication technology and design choices [in particular, the

floating-gate parameter memory, see 1–3], the parameter

variability and spike time jitter are significantly higher than

on BrainScaleS-2 [4].

The training procedure was analogous to the one used

on BrainScaleS-2 although using a different code base. To

accommodate the CoBa synapse dynamics, we introduced

global weight scale factors that modeled the distance be-

tween reversal and leak potentials and the total conduc-

tance, which were multiplied to the synaptic weights to

achieve a CuBa. This approximation could then be trained

with our learning rules. Despite this approximation and the

considerable substrate variability, our framework was able

to compensate well and classify the data set (Fig. SI.A1)

correctly after only few training steps.

SI.B Additional experiments

In addition to the simulation results collected in Table 2

we provide additional training results on the MNIST data

set here (Table SI.B1). We quantify the effect of noisy in-

put spike times on generalization by comparing a noiseless

training run and a run with input noise, both using the hy-

perparameters shown in Table A. Additionally, we train a

network with a larger hidden layer as well as a deeper net-

work with two hidden layers. Finally, we illustrate the effect

of the weight quantization on the training of the MNIST

data set by using the same 6-bit quantization as on the

BrainScaleS-2.

Table SI.B1: Additional simulation runs on the MNIST data set.
The values given as the baseline are taken from Table 2. With the
noted exception of training length. Apart from the number of training
epochs (see footnotes), the hyperparameters for simulations with the
input resolution of 28 × 28 are the same as in Table A and the sim-
ulations for the input resolution of 16× 16 used the hyperparameters
given in Table B.

simulation
input hidden accuracy [%]

resolution neurons test train

baseline 28× 28 350 97.1± 0.1 99.6± 0.1
without noise 28× 28 350 95.7± 0.3 99.7± 0.1
larger hidden layer 28× 28 800 97.3± 0.1 99.8± 0.1
two hidden layers1 28× 28 400-400 97.1± 0.1 99.5± 0.1

baseline2 16× 16 246 97.4± 0.2 99.2± 0.1
6-bit weight resolution2 16× 16 246 97.3± 0.1 99.1± 0.1

1 This network was trained for 300 epochs.
2 This network was trained for 150 epochs.

SI.C Robustness to post-training varia-
tions

We have already shown that our learning mechanism is able

to cope well with noise and parameter variability which are

present during training (Figs. 4 and 5). In addition to these

distortions which can be accounted for by the learning mech-

anism, it is interesting to measure the performance of the

trained network under adverse effects that were not present

during training. This is especially relevant for analog cir-

cuits where, for example, temperature changes can lead to

shifts in the analog neuron parameters. We model this ef-

fect by training 10 networks on the MNIST data set using

the ideal parameters of ϑ = 1 and τs = τm = 1 for the neu-

ron threshold and time constant and then evaluating their

performance on the test data set for shifted values of the

threshold and time constant (Fig. SI.C1 a, b). These sim-

ulations show that the trained networks cope well, even if

the relative shifts to the parameters are much larger than

what can be typically expected due to temperature changes

on BrainScaleS-2.
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Furthermore, we consider a scenario which is less likely

on neuromorphic platforms, but may be more relevant in

biological networks. In biology, neural networks have to

be robust against the death of neuron cells within the net-

work. For each of the 10 fully trained networks we delete a

percentage of its hidden population and evaluate the perfor-

mance on the test set. As the consequences of this procedure

strongly depend on exact choice of the deleted neurons, we

repeat each deletion scenario for each network 10 times with

different random seeds. Figure SI.C1c shows that networks

trained with our learning mechanism exhibit stability to-

wards sudden neuron death after training and even for 5 %

neuron death the bound of the second quartile is still at

92.3 % accuracy. Note also that if plasticity is ongoing, the

network can learn to recover much of its performance after

apoptosis.
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Figure SI.C1: Robustness to variations not present during
training. All panels show median (black), quartiles (dark gray), as
well as the entire range between minimum and maximum (light gray)
in the shaded regions. (a) Dependence of test accuracy for evaluation
for 10 trained networks with shifted threshold value θ. (b) Test accu-
racies for shifts in the neuron time constant τs and τm. (c) Influence
of random deletion of hidden neurons on test accuracies. For each
neuron death ratio, 10 different random sets of hidden neurons were
deleted. These ten deletion sets were applied to the same ten networks
as in (a) and (b).

SI.D Simplification of the learning rule

The learning rule for τm = τs described in the main paper

and derived in the Methods is computationally rather de-

manding: it needs multiple evaluations of the exponential

function as well as an evaluation of the Lambert W function

W, for which no closed form exists. As the computational

complexity of plasticity mechanisms on many neuromorphic
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Figure SI.D1: Training on the Yin-Yang data set with a sim-
plified learning rule. We approximated the learning rule to have less
complex updates (Eqns. (SI.D1) and (SI.D2)). (a) shows the training
process of 150 epochs. We reach a test accuracy of (91.7± 1.4) % and
training accuracy (91.7± 1.2) % averaged over 10 seeds. (b) shows
the classification as in Fig. 2 after training for the highlighted training
in (a).

chips is limited, we investigate the possibility of approxi-

mating the derivatives Eqns. (4) and (5) by replacing the

exponential functions as well as W by a constant

λ1:

∂tk
∂wki

= −λ (tk − ti) , (SI.D1)

∂tk
∂ti

= −λwki
τs

(tk − ti − τs) . (SI.D2)

The approximated version consists only of simple differ-

ences and multiplications making this learning rule more

amenable for on-chip implementations.

To examine the approximated learning rule in the stan-

dard setup with τm = τs we chose λ = 0.0192 by evaluating
1
a1

1
W(z)+1 for a few inputs into the hidden layer. Using

this extreme simplification we trained a network to clas-

sify the Yin-Yang data set (Fig. SI.D1). While the network

learned the task correctly and achieved a test accuracy of

(91.7± 1.4) %, this represents a small but noticeable drop

in accuracy compared to the full learning rule (Table 2). We

also observed that these simplified rules led to more instabil-

ity for longer training periods (not shown here). Nonethe-

less, these promising results give us confidence that that a

more careful choice of the constant or a replacement with a

simple, but non-constant term can alleviate these problems

while retaining a simple form of the learning rule.

Note, in particular, that Eqn. (SI.D2) explicitly con-

tains the term ti + τs. This term represents the maxi-

mum of a postsynaptic potential (PSP) and changes sign

when the output spike at T happens before versus after

the maximum. This simple difference captures the major

non-monotonic relationship in the time derivative. As the

1This effectively leads to ρ being a constant in Eqns. (39) and (40).
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maximum of the PSP is given by a closed form solution

tmax = ti + τmτs
τs−τm log τs

τm
for arbitrary combinations of τs

and τm, it seems natural to investigate a slightly altered

learning rule for different time constants.

SI.E Power consumption and execution
time measurements

Table 1 in the main manuscript compares the energy

consumption and classification speed of our model on

BrainScaleS-2 with other neuromorphic platforms and an

ANN on a GPU. This section details how the power and

classification speed measurements were performed, as well

as their implications for the scalability of and potential im-

provements to our setup. Additionally, we present our mea-

surement technique for the GPU reference.

SI.E.1 BrainScaleS-2

Power breakdown The full BrainScaleS-2 chip con-

sumed a total of 175 mW measured during runtime with

the INA219 chip [5]. This overall figure encompasses the

chip’s high-speed communication links (approx. 60 mW),

the digital periphery as well as its clocking infrastructure

(approx. 80 mW), and the biasing of analog circuits (ap-

prox. 35 mW). Importantly, we could not observe a sig-

nificant change in power consumption between the network

during inference and an emulation of an inactive network.

This implies that the cost of event transport and synaptic

processing is negligible on the reported scales and that the

overall figure would not be impacted by increased activity

levels. As inactive synapses mostly contribute to the overall

power consumption through negligible leakage currents, the

power consumption would not be impacted by an increase

of the neuron circuit’s fan-in that would allow the training

on larger input spaces.

Execution time breakdown We define the round-trip

time for an on-chip inference run as starting before the for-

ward pass through the network in our PyTorch implementa-

tion and ending when all classification results produced by

the chip are available in PyTorch. For the classification of

the full MNIST test data set on BrainScaleS-2 we measured

a round-trip time of 0.937 s.

Due to this conservative definition of the round-trip time,

our measurement includes a significant amount of time on

the host (for data pre- and post-processing) and for com-

munication between host and the neuromorphic system.

Fig. SI.E1 shows a detailed breakdown of the execution

time. We see that once the data arrives on the chip, it

takes 480 ms to process the 10 000 images of the test set.

This results in a classification every 48 µs or equivalently a

classification rate of 20 800 images per second.

Considering the relevant hardware time constants of τs ≈
τm ≈ ...6 µs and the typical time to solution of around 1 τs
to 1.5 τs, a classification duration per sample of 48 µs seems

surprisingly long. This is owed to the sequential presen-

tation of data samples to the network, for which we need

to ensure that all residual activity – membrane voltages as

well as synaptic currents – from the last sample has fully de-

cayed before the next sample is presented. Currently, this is

achieved by simply waiting between samples, but Cramer et

al. [6] present an alternative: The plasticity processing unit

(PPU) is able to trigger a reset of all membrane voltages

and synaptic currents on the chip. Using this mechanism,

Cramer et al. [6] shorten the classification time per image

to 11.8 µs. The usage of artificial resets would also be a vi-

able optimization for our model. It would require the previ-

ously switched off PPU to be activated and would therefore

slightly increase the power consumption (by approximately

20 mW). This increase in power would however be more

than compensated by the approximately quadrupled sam-

ple throughput.

encoding

184ms

experiment

674ms

dec.

79ms

neuromorphic emulation on BrainScaleS-2

480ms

48µs

Figure SI.E1: Breakdown of the execution time for inference
on the MNIST test set. The total time of about one second consists
of an encoding, an experiment and a decoding phase. The encoding
phase includes the translation of PyTorch tensors into spike trains and
the encoding of the spike trains into instructions for the neuromorphic
chip. In the experiment phase the instructions are sent from the host to
the chip, the emulation is performed and the results are read out from
the chip and communicated back to the host. In the final decoding
phase the emulations results are converted back to PyTorch tensors.

SI.E.2 GPU

For comparison to conventional computing hardware we

add power and classification speed measurements on

a Nvidia Tesla P100 GPU to Table 1. For the mea-

surements on the GPU we use the convolutional neural

network given as standard example in the PyTorch repos-

itory (https://github.com/pytorch/examples/blob/

507493d7b5fab51d55af88c5df9eadceb144fb67/mnist/

main.py).
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The power measurements are performed using the tool

nvidia-smi which is runnning in the background while in

the foreground we run a PyTorch program which repeats

the classification of the MNIST test data set for 10 times.

Figure SI.E2 shows the power consumption over the full

program runtime. We see that the GPU is only active for

10 short periods, the duration of which match the measured

times during which the PyTorch program uses the GPU

(Fig. SI.E2 b). The power consumption is calculated as an

average over these intervals, resulting in 106.5 W.

The speed measurements were performed using time mea-

surements in Python and averaged over the 10 classifica-

tions, resulting in a classification time per image of 8 µs.

This amounts to an energy-per-classification value of 852 µJ.

As an additional reference we attempted to determine the

power consumption and classification speed for a fully con-

nected network with a hidden layer of 246 neurons (same

size as the hidden layer on BrainScaleS-2) on GPU. How-

ever, due to the fact that the classification was a factor of 20

to 25 faster than for the CNN, we were not able to measure

the power in a fine enough resolution with nvidia-smi to

yield reliable values. To estimate a lower-bound for the en-

ergy per classification in this case, we can take the power

consumption of the GPU in the phases where it was not

actively used in the CNN measurement (i.e. power values

between the peaks in Fig. SI.E2a) which is approximately

34 W. This “idle” power consumption for the CNN case

seemed to approximately match the averaged power drain

for the fully connected network. This amounts to a lower-

bound estimate of the energy-per-classification value on the

order of 10 µJ.
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Figure SI.E2: Power consumption of Nvidia Tesla P100 GPU
during classification of MNIST test data. (a) Power consump-
tion of a standard PyTorch network for MNIST classification while
running inference on the test data set for 10 times. (b) Zoom on a
peak in the power consumption. The shaded area corresponds to the
time during which the GPU is actively used (measured from within
Python).

SI.F Extended literature comparison

In Table SI.F1 we provide a more comprehensive overview

of neuromorphic classifiers, including references which lack

energy and/or time measurements .
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