17 research outputs found

    A regional water quality model designed for a range of users and for retrofit and re-use

    No full text
    We discuss the motivations for, and software design concepts underpinning, the development of a regional water quality model. The Environmental Management Support System (EMSS) was developed to predict daily fluxes of runoff, total suspended sediment, total nitrogen and total phosphorous through a large-scale river network. It was built using a custom environmental modelling framework called Tarsier, founded on the Borland C++ Builder rapid application development environment. Three autonomous models are integrated within the EMSS, but are loosely coupled so that alternative models could be retrofitted into the system if desired. The three models share common data handling and visualisation routines resident in the Tarsier modelling environment and used in other modelling applications. The EMSS was designed for use by a range of stakeholders with varying levels of computer and technical proficiency. To satisfy their varying needs, we built three different interfaces, suited to ‘expert’, ‘intermediate’ and ‘basic’ users. The interfaces for the latter two groups were developed using interface prototyping methods, resulting in software that suited the user requirements. The object-oriented design employed in the coding of the EMSS has enhanced the extendibility and re-useability of the software. The EMSS development was part of a larger hydrologic modelling initiative aimed at reducing duplication in model building and standardising approaches to model design and delivery. The lessons learned during development of the EMSS have informed our future model development strategy

    NLTE wind models of hot subdwarf stars

    Full text link
    We calculate NLTE models of stellar winds of hot compact stars (central stars of planetary nebulae and subdwarf stars). The studied range of subdwarf parameters is selected to cover a large part of these stars. The models predict the wind hydrodynamical structure and provide mass-loss rates for different abundances. Our models show that CNO elements are important drivers of subdwarf winds, especially for low-luminosity stars. We study the effect of X-rays and instabilities on these winds. Due to the line-driven wind instability, a significant part of the wind could be very hot.Comment: 7 pages, to appear in Astrophysics and Space Science. The final publication will be available at springerlink.com

    In vivo and in vitro proinflammatory effects of particulate air pollution (PM10).

    Get PDF
    Epidemiologic studies have reported associations between fine particulate air pollution, especially particles less than 10 mm in diameter (PM10), and the development of exacerbations of asthma and chronic obstructive pulmonary disease. However, the mechanism is unknown. We tested our hypothesis that PM10 induces oxidant stress, causing inflammation and injury to airway epithelium. We assessed the effects of intratracheal instillation of PM10 in rat lungs. The influx of inflammatory cells was measured in bronchoalveolar lavage (BAL). Airspace epithelial permeability was assessed as total protein in bronchoalveolar lavage fluid (BALF) in vivo. The oxidant properties of PM10 were determined by their ability to cause changes in reduced glutathione (GSH) and oxidized glutathione (GSSG). We also compared the effects of PM10 with those of fine (CB) and ultrafine (ufCB) carbon black particles. Six hours after intratracheal instillation of PM10, we noted an influx of neutrophils (up to 15% of total BAL cells) in the alveolar space, increased epithelial permeability, an increase in total protein in BALF from 0.39 +/- 0.01 to 0.62 +/- 0.01 mg/ml (mean +/- SEM) and increased lactate dehydrogenase concentrations in BALF. An even greater inflammatory response was observed after intratracheal instillation of ufCB, but not after CB instillation. PM10 had oxidant activity in vivo, as shown by decreased GSH in BALF (from 0.36 +/- 0.05 to 0.25 +/- 0.01 nmol/ml) after instillation. BAL leukocytes from rats treated with PM10 produced greater amounts of nitric oxide, measured as nitrite (control 3.07 +/- 0.33, treated 4.45 +/- 0.23 mM/1 x 10(6) cells) and tumor necrosis factor alpha (control 21.0 +/- 3.1, treated 179.2 +/- 29.4 unit/1 x 10(6) cells) in culture than BAL leukocytes obtained from control animals. These studies provide evidence that PM10 has free radical activity and causes lung inflammation and epithelial injury. These data support our hypothesis concerning the mechanism for the adverse effects of particulate air pollution on patients with airway diseases

    New Insights into White-Light Flare Emission from Radiative-Hydrodynamic Modeling of a Chromospheric Condensation

    Full text link
    (abridged) The heating mechanism at high densities during M dwarf flares is poorly understood. Spectra of M dwarf flares in the optical and near-ultraviolet wavelength regimes have revealed three continuum components during the impulsive phase: 1) an energetically dominant blackbody component with a color temperature of T ∼\sim 10,000 K in the blue-optical, 2) a smaller amount of Balmer continuum emission in the near-ultraviolet at lambda << 3646 Angstroms and 3) an apparent pseudo-continuum of blended high-order Balmer lines. These properties are not reproduced by models that employ a typical "solar-type" flare heating level in nonthermal electrons, and therefore our understanding of these spectra is limited to a phenomenological interpretation. We present a new 1D radiative-hydrodynamic model of an M dwarf flare from precipitating nonthermal electrons with a large energy flux of 101310^{13} erg cm−2^{-2} s−1^{-1}. The simulation produces bright continuum emission from a dense, hot chromospheric condensation. For the first time, the observed color temperature and Balmer jump ratio are produced self-consistently in a radiative-hydrodynamic flare model. We find that a T ∼\sim 10,000 K blackbody-like continuum component and a small Balmer jump ratio result from optically thick Balmer and Paschen recombination radiation, and thus the properties of the flux spectrum are caused by blue light escaping over a larger physical depth range compared to red and near-ultraviolet light. To model the near-ultraviolet pseudo-continuum previously attributed to overlapping Balmer lines, we include the extra Balmer continuum opacity from Landau-Zener transitions that result from merged, high order energy levels of hydrogen in a dense, partially ionized atmosphere. This reveals a new diagnostic of ambient charge density in the densest regions of the atmosphere that are heated during dMe and solar flares.Comment: 50 pages, 2 tables, 13 figures. Accepted for publication in the Solar Physics Topical Issue, "Solar and Stellar Flares". Version 2 (June 22, 2015): updated to include comments by Guest Editor. The final publication is available at Springer via http://dx.doi.org/10.1007/s11207-015-0708-

    Integrating gas sorption with mercury porosimetry

    No full text
    Previous work has shown that it is possible to use integrated nitrogen sorption and mercury porosimetry experiments to determine the distribution of average pore length with pore diameter for mesoporous solids. In this work, the previous data analysis method has been generalised such that it is also suitable for application to samples with higher levels of mercury entrapment than before. This generalisation of the theory has facilitated the ability to use a series of progressively larger mercury scanning loops, in integrated gas sorption and porosimetry experiments, to potentially determine the full pore length distribution for pores of a given diameter, and the distribution of pore co-ordination number. The new analysis has been applied to a silica catalyst support

    Fields of Obligation: Rooting Ethical Consumption in Kenyan Horticulture

    No full text
    It was not so long ago that mangoes, papaya and snow peas evoked images of tropical climes and exotic peoples. Recently, however, the consumption of so-called luxury fruits and vegetables has elicited a different sort of imagery. Far from the lure of seductive landscapes, today’s consumer is confronted with haunting images of toxic fields, child slavery and the African poor. Such images are part of a new morality of consumption, where consumers, NGOs, trade unions and global supermarkets aspire to ‘save’ the African worker from the downside of globalization. This article explores the ways in which Kenya’s highly valuable vegetable trade has become the field on which notions of justice, economic rights and African development are played out. Based on archival research and consumer interviews, it focusses specifically on how the ethical turn of UK consumers (and the retailers’ branding of this sensibility) is rooted in an older legacy, whereby 19th-century liberal considerations of duty, morality and progress inhabited the agenda of the late colonial state. The article suggests that, in both cases, African labor is an arena in which discourses of justice are played out, as a consuming public (re)constitute the African worker as an object of their duty and obligation
    corecore