140 research outputs found

    A New Method for Assessing the Resiliency of Large, Complex Networks

    Get PDF
    Designing resilient and reliable networks is a principle concern of planners and private firms. Traffic congestion whether recurring or as the result of some aperiodic event is extremely costly. This paper describes an alternative process and a model for analyzing the resiliency of networks that address some of the shortcomings of more traditional approaches – e.g., the four-step modeling process used in transportation planning. It should be noted that the authors do not view this as a replacement to current approaches but rather as a complementary tool designed to augment analysis capabilities. The process that is described in this paper for analyzing the resiliency of a network involves at least three steps: 1. assessment or identification of important nodes and links according to different criteria 2. verification of critical nodes and links based on failure simulations and 3. consequence. Raster analysis, graph-theory principles and GIS are used to develop a model for carrying out each of these steps. The methods are demonstrated using two, large interdependent networks for a metropolitan area in the United States.

    Biomolecular mechanisms of staphylococcal biofilm formation

    Get PDF
    The multitude of biomolecular and regulatory factors involved in staphylococcal adhesion and biofilm formation owe much to their ability to colonize surfaces, allowing the biofilm form to become the preferential bacterial phenotype. Judging by total number, biomass and variety of environments colonized, bacteria can be categorized as the most successful lifeform on earth. This is due to the ability of bacteria and other microorganisms to respond phenotypically via biomolecular processes to the stresses of their surrounding environment. This review focuses on the specific pathways involved in the adhesion of the Gram-positive bacteria Staphylococcus epidermidis and Staphylococcus aureus with reference to the role of specific cell surface adhesins, the ica operon, accumulation-associated proteins and quorum-sensing systems and their significance in medical device-related infection

    Network Analysis of Commuting Flows: A Comparative Static Approach to German Data

    Get PDF
    Abstract The analysis of complex networks has recently received considerable attention. The work by Albert and Barabási presented a research challenge to network analysis, that is, growth of the network. The present paper offers a network analysis of the spatial commuting network in Germany. First, we study the spatial evolution of the commuting network over time. Secondly, we compare two spatial interaction model (SIM) specifications, in order to replicate the actual network structure. Our findings suggest that the commuting network appeared to become more dense and clustered, while the SIMs seem to require more sophisticated specifications, in order to replicate such a connectivity structure

    Non-thermal Plasma Exposure Rapidly Attenuates Bacterial AHL-Dependent Quorum Sensing and Virulence.

    Get PDF
    The antimicrobial activity of atmospheric pressure non-thermal plasma has been exhaustively characterised, however elucidation of the interactions between biomolecules produced and utilised by bacteria and short plasma exposures are required for optimisation and clinical translation of cold plasma technology. This study characterizes the effects of non-thermal plasma exposure on acyl homoserine lactone (AHL)-dependent quorum sensing (QS). Plasma exposure of AHLs reduced the ability of such molecules to elicit a QS response in bacterial reporter strains in a dose-dependent manner. Short exposures (30–60 s) produce of a series of secondary compounds capable of eliciting a QS response, followed by the complete loss of AHL-dependent signalling following longer exposures. UPLC-MS analysis confirmed the time-dependent degradation of AHL molecules and their conversion into a series of by-products. FT-IR analysis of plasma-exposed AHLs highlighted the appearance of an OH group. In vivo assessment of the exposure of AHLs to plasma was examined using a standard in vivo model. Lettuce leaves injected with the rhlI/lasI mutant PAO-MW1 alongside plasma treated N-butyryl-homoserine lactone and n-(3-oxo-dodecanoyl)-homoserine lactone, exhibited marked attenuation of virulence. This study highlights the capacity of atmospheric pressure non-thermal plasma to modify and degrade AHL autoinducers thereby attenuating QS-dependent virulence in P. aeruginosa
    corecore