7 research outputs found

    Physiological roles of pyruvate ferredoxin oxidoreductase and pyruvate formate-lyase in Thermoanaerobacterium saccharolyticum JW/SL-YS485

    Get PDF
    Background: Thermoanaerobacter saccharolyticum is a thermophilic microorganism that has been engineered to produce ethanol at high titer (30–70 g/L) and greater than 90 % theoretical yield. However, few genes involved in pyruvate to ethanol production pathway have been unambiguously identified. In T. saccharolyticum, the products of six putative pfor gene clusters and one pfl gene may be responsible for the conversion of pyruvate to acetyl-CoA. To gain insights into the physiological roles of PFOR and PFL, we studied the effect of deletions of several genes thought to encode these activities. Results: It was found that pyruvate ferredoxin oxidoreductase enzyme (PFOR) is encoded by the pforA gene and plays a key role in pyruvate dissimilation. We further demonstrated that pyruvate formate-lyase activity (PFL) is encoded by the pfl gene. Although the pfl gene is normally expressed at low levels, it is crucial for biosynthesis in T. saccharolyticum. In pforA deletion strains, pfl expression increased and was able to partially compensate for the loss of PFOR activity. Deletion of both pforA and pfl resulted in a strain that required acetate and formate for growth and produced lactate as the primary fermentation product, achieving 88 % theoretical lactate yield. Conclusion: PFOR encoded by Tsac_0046 and PFL encoded by Tsac_0628 are only two routes for converting pyruvate to acetyl-CoA in T. saccharolyticum. The physiological role of PFOR is pyruvate dissimilation, whereas that of PFL is supplying C1 units for biosynthesis

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Deletion of the hfsB gene increases ethanol production in Thermoanaerobacterium saccharolyticum and several other thermophilic anaerobic bacteria

    No full text
    Hettich, Robert L/0000-0001-7708-786X; Lynd, Lee R/0000-0002-5642-668X; BELDUZ, Ali Osman/0000-0003-2240-7568; Olson, Daniel/0000-0001-5393-6302; Giannone, Richard/0000-0001-8551-0138; Eminoglu, Aysenur/0000-0003-1693-6332; Murphy, Sean/0000-0001-9268-6684WOS: 000416866000002PubMed: 29213322Background: With the discovery of interspecies hydrogen transfer in the late 1960s (Bryant et al. in Arch Microbiol 59:20-31, 1967), it was shown that reducing the partial pressure of hydrogen could cause mixed acid fermenting organisms to produce acetate at the expense of ethanol. Hydrogen and ethanol are both more reduced than glucose. Thus there is a tradeoff between production of these compounds imposed by electron balancing requirements; however, the mechanism is not fully known. Results: Deletion of the hfsA or B subunits resulted in a roughly 1.8-fold increase in ethanol yield. the increase in ethanol production appears to be associated with an increase in alcohol dehydrogenase activity, which appears to be due, at least in part, to increased expression of the adhE gene, and may suggest a regulatory linkage between hfsB and adhE. We studied this system most intensively in the organism Thermoanaerobacterium saccharolyticum; however, deletion of hfsB also increases ethanol production in other thermophilic bacteria suggesting that this could be used as a general technique for engineering thermophilic bacteria for improved ethanol production in organisms with hfs-type hydrogenases. Conclusion: Since its discovery by Shaw et al. (JAMA 191:6457-64, 2009), the hfs hydrogenase has been suspected to act as a regulator due to the presence of a PAS domain. We provide additional support for the presence of a regulatory phenomenon. in addition, we find a practical application for this scientific insight, namely increasing ethanol yield in strains that are of interest for ethanol production from cellulose or hemicellulose. in two of these organisms (T. xylanolyticum and T. thermosaccharolyticum), the ethanol yields are the highest reported to date.Scientific and Technological Research Council of Turkey (TUBITAK-BIDEB)Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) [2214/A]; Office of Biological and Environmental Research in the DOE Office of Science; Office of Science of the U.S. Department of EnergyUnited States Department of Energy (DOE) [DE-AC02- 05CH11231]; U.S. Department of EnergyUnited States Department of Energy (DOE) [DE-AC05-00OR22725]In this work, AE was supported by the Scientific and Technological Research Council of Turkey (TUBITAK-BIDEB 2214/A International Doctoral Research Fellowship Program) with a scholarship. the BioEnergy Science Center is a U.S. Department of Energy Bioenergy Research Center supported by the Office of Biological and Environmental Research in the DOE Office of Science. the genomic resequencing work conducted by the U.S. Department of Energy Joint Genome Institute, a DOE Office of Science User Facility, is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02- 05CH11231. This manuscript has been authored by Dartmouth College under Contract No. DE-AC05-00OR22725 with U.S. Department of Energy. the US Government retains and the publisher, by accepting the article for publication, acknowledges that the US Government retains a non-exclusive, paid-up, irrevocable worldwide license to publish or reproduce the published form of this manuscript or allow others to do so, for US Government purposes

    Effect of Antiplatelet Therapy on Survival and Organ Support–Free Days in Critically Ill Patients With COVID-19

    No full text
    International audienc
    corecore