1,986 research outputs found
Socio-economic rights and the Canadian Charter of Rights and Freedoms : the prospects for domestic enforcement through the courts.
The issue to be examined is whether the provisions of the Canadian Charter of Rights and Freedoms are capable of affording protection to socio-economic rights. It will be demonstrated that the provincial and federal governments of Canada are obligated at domestic and international law to provide socioeconomic rights protection, and the courts are required to enforce those obligations. The provisions of the Charter are one mechanism that can be used to enforce the governments’ obligations, as the Charter was intended to give effect to our societal goal of affording equal respect and concern to all individuals. Fulfilling that intent requires the Charter’s provisions to be interpreted in a broad manner that affords protection to any and all socioeconomic rights that qualify as fundamental human rights, i.e., rights that facilitate and are necessary for the enjoyment of other rights
Identifying designatable units for intraspecific conservation prioritization : a hierarchical approach applied to the lake whitefish species complex (Coregonus spp.)
The concept of the designatable unit (DU) affords a practical approach to identifying
diversity below the species level for conservation prioritization. However,
its suitability for defining conservation units in ecologically diverse, geographically
widespread and taxonomically challenging species complexes has not been
broadly evaluated. The lake whitefish species complex (Coregonus spp.) is geographically
widespread in the Northern Hemisphere, and it contains a great deal
of variability in ecology and evolutionary legacy within and among populations,
as well as a great deal of taxonomic ambiguity. Here, we employ a set of hierarchical
criteria to identify DUs within the Canadian distribution of the lake white-
fish species complex. We identified 36 DUs based on (i) reproductive isolation,
(ii) phylogeographic groupings, (iii) local adaptation and (iv) biogeographic
regions. The identification of DUs is required for clear discussion regarding the
conservation prioritization of lake whitefish populations. We suggest conservation
priorities among lake whitefish DUs based on biological consequences of
extinction, risk of extinction and distinctiveness. Our results exemplify the need
for extensive genetic and biogeographic analyses for any species with broad geographic
distributions and the need for detailed evaluation of evolutionary history
and adaptive ecological divergence when defining intraspecific conservation
units
Vacancies, disorder-induced smearing of the electronic structure, and its implications for the superconductivity of anti-perovskite MgCNi
The anti-perovskite superconductor MgCNi was studied using
high-resolution x-ray Compton scattering combined with electronic structure
calculations. Compton scattering measurements were used to determine
experimentally a Fermi surface that showed good agreement with that of our
supercell calculations, establishing the presence of the predicted hole and
electron Fermi surface sheets. Our calculations indicate that the Fermi surface
is smeared by the disorder due to the presence of vacancies on the C and Ni
sites, but does not drastically change shape. The 20\% reduction in the Fermi
level density-of-states would lead to a significant () suppression
of the superconducting for pair-forming electron-phonon coupling.
However, we ascribe the observed much smaller reduction at our
composition (compared to the stoichiometric compound) to the suppression of
pair-breaking spin fluctuations.Comment: 11 pages, 3 figure
PrimPol bypasses UV photoproducts during eukaryotic chromosomal DNA replication
DNA damage can stall the DNA replication machinery, leading to genomic instability. Thus, numerous mechanisms exist to complete genome duplication in the absence of a pristine DNA template, but identification of the enzymes involved remains incomplete. Here, we establish that Primase-Polymerase (PrimPol; CCDC111), an archaeal-eukaryotic primase (AEP) in eukaryotic cells, is involved in chromosomal DNA replication. PrimPol is required for replication fork progression on ultraviolet (UV) lightdamaged DNA templates, possibly mediated by its ability to catalyze translesion synthesis (TLS) of these lesions. This PrimPol UV lesion bypass pathway is not epistatic with the Pol h-dependent pathway and, as a consequence, protects xeroderma pigmentosum variant (XP-V) patient cells from UV-induced cytotoxicity. In addition, we establish that PrimPol is also required for efficient replication fork progression during an unperturbed S phase. These and other findings indicate that PrimPol is an important player in replication fork progression in eukaryotic cells
William H. Simon: Thinking like a Lawyer - About Ethics
This is the edited text of a panel discussion held as part of the legal ethics curriculum at Duquesne University Law School on October 24, 1999. The speakers have had the opportunity to update and correct this text; therefore, this printed version may deviate slightly from what was presented
A review of machine learning applications in wildfire science and management
Artificial intelligence has been applied in wildfire science and management
since the 1990s, with early applications including neural networks and expert
systems. Since then the field has rapidly progressed congruently with the wide
adoption of machine learning (ML) in the environmental sciences. Here, we
present a scoping review of ML in wildfire science and management. Our
objective is to improve awareness of ML among wildfire scientists and managers,
as well as illustrate the challenging range of problems in wildfire science
available to data scientists. We first present an overview of popular ML
approaches used in wildfire science to date, and then review their use in
wildfire science within six problem domains: 1) fuels characterization, fire
detection, and mapping; 2) fire weather and climate change; 3) fire occurrence,
susceptibility, and risk; 4) fire behavior prediction; 5) fire effects; and 6)
fire management. We also discuss the advantages and limitations of various ML
approaches and identify opportunities for future advances in wildfire science
and management within a data science context. We identified 298 relevant
publications, where the most frequently used ML methods included random
forests, MaxEnt, artificial neural networks, decision trees, support vector
machines, and genetic algorithms. There exists opportunities to apply more
current ML methods (e.g., deep learning and agent based learning) in wildfire
science. However, despite the ability of ML models to learn on their own,
expertise in wildfire science is necessary to ensure realistic modelling of
fire processes across multiple scales, while the complexity of some ML methods
requires sophisticated knowledge for their application. Finally, we stress that
the wildfire research and management community plays an active role in
providing relevant, high quality data for use by practitioners of ML methods.Comment: 83 pages, 4 figures, 3 table
Rapid Depletion of Target Proteins Allows Identification of Coincident Physiological Responses
Targeted protein degradation is a powerful tool that can be used to create unique physiologies depleted of important factors. Current strategies involve modifying a gene of interest such that a degradation peptide is added to an expressed target protein and then conditionally activating proteolysis, either by expressing adapters, unmasking cryptic recognition determinants, or regulating protease affinities using small molecules. For each target, substantial optimization may be required to achieve a practical depletion, in that the target remains present at a normal level prior to induction and is then rapidly depleted to levels low enough to manifest a physiological response. Here, we describe a simplified targeted degradation system that rapidly depletes targets and that can be applied to a wide variety of proteins without optimizing target protease affinities. The depletion of the target is rapid enough that a primary physiological response manifests that is related to the function of the target. Using ribosomal protein Si as an example, we show that the rapid depletion of this essential translation factor invokes concomitant changes to the levels of several mRNAs, even before appreciable cell division has occurred
Observations of Giant Pulses from Pulsar PSR B0950+08 using LWA1
We report the detection of giant pulse emission from PSR B0950+08 in 24 hours
of observations made at 39.4 MHz, with a bandwidth of 16 MHz, using the first
station of the Long Wavelength Array, LWA1. We detected 119 giant pulses from
PSR B0950+08 (at its dispersion measure), which we define as having SNRs at
least 10 times larger than for the mean pulse in our data set. These 119 pulses
are 0.035% of the total number of pulse periods in the 24 hours of
observations. The rate of giant pulses is about 5.0 per hour. The cumulative
distribution of pulse strength is a steep power law, , but much less steep than would be expected if we were observing the
tail of a Gaussian distribution of normal pulses. We detected no other
transient pulses in a dispersion measure range from 1 to 90 pc cm, in
the beam tracking PSR B0950+08. The giant pulses have a narrower temporal width
than the mean pulse (17.8 ms, on average, vs. 30.5 ms). The pulse widths are
consistent with a previously observed weak dependence on observing frequency,
which may be indicative of a deviation from a Kolmogorov spectrum of electron
density irregularities along the line of sight. The rate and strength of these
giant pulses is less than has been observed at 100 MHz. Additionally, the
mean (normal) pulse flux density we observed is less than at 100 MHz.
These results suggest this pulsar is weaker and produces less frequent giant
pulses at 39 MHz than at 100 MHz.Comment: 27 pages, 12 figures, typos correcte
- …