30 research outputs found

    A Preliminary Investigation into Eye Gaze Data in a First Person Shooter Game

    Get PDF
    This paper describes a study carried out in which the eye gaze data of several users playing a simple First Person Shooter (FPS) game has been recorded. This work shows the design and implementation of a simple game and how the execution of the game can be synchronized with an eye tracking system. The motivation behind this work is to determine the existence of visual psycho-perceptual phenomena, which may be of some use in developing appropriate information limits for distributed interactie media compression algorithms. Only 2 degrees of the 140 degrees of human vision has a high level of detail. It may be possible to determine the areas of the screen that a user is focusing on and render it in high details or pay perticular attention to its contents so as to set appropriate dead reckoning limits. Our experiment show that eye tracking may allow for improvements in rendering and new compression algorithms to be created for an online FPS game

    A Preliminary Investigation into Eye Gaze Data in a First Person Shooter Game

    Get PDF
    This paper describes a study carried out in which the eye gaze data of several users playing a simple First Person Shooter (FPS) game has been recorded. This work shows the design and implementation of a simple game and how the execution of the game can be synchronized with an eye tracking system. The motivation behind this work is to determine the existence of visual psycho-perceptual phenomena, which may be of some use in developing appropriate information limits for distributed interactie media compression algorithms. Only 2 degrees of the 140 degrees of human vision has a high level of detail. It may be possible to determine the areas of the screen that a user is focusing on and render it in high details or pay perticular attention to its contents so as to set appropriate dead reckoning limits. Our experiment show that eye tracking may allow for improvements in rendering and new compression algorithms to be created for an online FPS game

    Reservoirs of faecal indicator bacteria in well-head hand pumps in Bangladesh

    Get PDF
    The majority of the population of Bangladesh (90%) rely on untreated groundwater for drinking and domestic use. At the point of collection, 40% of these supplies are contaminated with faecal indicator bacteria (FIB). Recent studies have disproved the theory that latrines discharging to shallow aquifers are the major contributor to this contamination. In this study, we tested the hypothesis that hand pumps are a reservoir of FIB. We sampled the handle, spout, piston and seal from 19 wells in Araihazar Upazila, Bangladesh and identified that the spout and seal were reservoirs of FIB. These findings led to our recommendation that well spouts be regularly cleaned, including the removal of precipitated deposits, and that the seals be regularly changed. It is envisaged that one or both of these interventions will reduce the numbers of FIB in drinking water, thereby reducing the burden of diarrhoeal disease in Bangladesh

    Filamentary Network and Magnetic Field Structures Revealed with BISTRO in the High-Mass Star-Forming Region NGC2264 : Global Properties and Local Magnetogravitational Configurations

    Full text link
    We report 850 μ\mum continuum polarization observations toward the filamentary high-mass star-forming region NGC 2264, taken as part of the B-fields In STar forming Regions Observations (BISTRO) large program on the James Clerk Maxwell Telescope (JCMT). These data reveal a well-structured non-uniform magnetic field in the NGC 2264C and 2264D regions with a prevailing orientation around 30 deg from north to east. Field strengths estimates and a virial analysis for the major clumps indicate that NGC 2264C is globally dominated by gravity while in 2264D magnetic, gravitational, and kinetic energies are roughly balanced. We present an analysis scheme that utilizes the locally resolved magnetic field structures, together with the locally measured gravitational vector field and the extracted filamentary network. From this, we infer statistical trends showing that this network consists of two main groups of filaments oriented approximately perpendicular to one another. Additionally, gravity shows one dominating converging direction that is roughly perpendicular to one of the filament orientations, which is suggestive of mass accretion along this direction. Beyond these statistical trends, we identify two types of filaments. The type-I filament is perpendicular to the magnetic field with local gravity transitioning from parallel to perpendicular to the magnetic field from the outside to the filament ridge. The type-II filament is parallel to the magnetic field and local gravity. We interpret these two types of filaments as originating from the competition between radial collapsing, driven by filament self-gravity, and the longitudinal collapsing, driven by the region's global gravity.Comment: Accepted for publication in the Astrophysical Journal. 43 pages, 32 figures, and 4 tables (including Appendix

    Filamentary Network and Magnetic Field Structures Revealed with BISTRO in the High-mass Star-forming Region NGC 2264: Global Properties and Local Magnetogravitational Configurations

    Get PDF
    We report 850 μm continuum polarization observations toward the filamentary high-mass star-forming region NGC 2264, taken as part of the B-fields In STar forming Regions Observations large program on the James Clerk Maxwell Telescope. These data reveal a well-structured nonuniform magnetic field in the NGC 2264C and 2264D regions with a prevailing orientation around 30° from north to east. Field strength estimates and a virial analysis of the major clumps indicate that NGC 2264C is globally dominated by gravity, while in 2264D, magnetic, gravitational, and kinetic energies are roughly balanced. We present an analysis scheme that utilizes the locally resolved magnetic field structures, together with the locally measured gravitational vector field and the extracted filamentary network. From this, we infer statistical trends showing that this network consists of two main groups of filaments oriented approximately perpendicular to one another. Additionally, gravity shows one dominating converging direction that is roughly perpendicular to one of the filament orientations, which is suggestive of mass accretion along this direction. Beyond these statistical trends, we identify two types of filaments. The type I filament is perpendicular to the magnetic field with local gravity transitioning from parallel to perpendicular to the magnetic field from the outside to the filament ridge. The type II filament is parallel to the magnetic field and local gravity. We interpret these two types of filaments as originating from the competition between radial collapsing, driven by filament self-gravity, and longitudinal collapsing, driven by the region's global gravity

    The metabolism of arsenite

    No full text
    xxv, 189 p. : ill. (some col.), maps ; 26 cm

    A Preliminary Investigation into Eye Gaze Data in a First Person Shooter Game

    No full text
    This paper describes a study carried out in which the eye gaze data of several users playing a simple First Person Shooter (FPS) game has been recorded. This work shows the design and implementation of a simple game and how the execution of the game can be synchronized with an eye tracking system. The motivation behind this work is to determine the existence of visual psycho-perceptual phenomena, which may be of some use in developing appropriate information limits for distributed interactie media compression algorithms. Only 2 degrees of the 140 degrees of human vision has a high level of detail. It may be possible to determine the areas of the screen that a user is focusing on and render it in high details or pay perticular attention to its contents so as to set appropriate dead reckoning limits. Our experiment show that eye tracking may allow for improvements in rendering and new compression algorithms to be created for an online FPS game

    A Preliminary Investigation into Eye Gaze Data in a First Person Shooter Game

    No full text
    This paper describes a study carried out in which the eye gaze data of several users playing a simple First Person Shooter (FPS) game has been recorded. This work shows the design and implementation of a simple game and how the execution of the game can be synchronized with an eye tracking system. The motivation behind this work is to determine the existence of visual psycho-perceptual phenomena, which may be of some use in developing appropriate information limits for distributed interactie media compression algorithms. Only 2 degrees of the 140 degrees of human vision has a high level of detail. It may be possible to determine the areas of the screen that a user is focusing on and render it in high details or pay perticular attention to its contents so as to set appropriate dead reckoning limits. Our experiment show that eye tracking may allow for improvements in rendering and new compression algorithms to be created for an online FPS game
    corecore