17 research outputs found

    Extracellular vesicles, from pathogenesis to biomarkers: The case for cerebral malaria

    Full text link
    Malaria infections due to the Plasmodium parasite remains a major global health problem. Plasmodium falciparum is responsible for majority of the severe cases, resulting in more than 400,000 deaths per annum . Extracellular vesicles (EVs) released by vascular cells, including parasitised erythrocytes, have been detected with increased levels in patients with malaria. EVs are thought to be involved in the pathogenesis of severe malaria, particularly cerebral malaria, and represent a unique molecular signature for different forms of the infection. In this review, we will cover the known effects of EVs on the vasculature and discuss their potential use as a biomarker of disease severity

    Oxidative stress, protein damage and repair in bacteria

    No full text
    International audienceOxidative damage can have a devastating effect on the structure and activity of proteins, and may even lead to cell death. The sulfur-containing amino acids cysteine and methionine are particularly susceptible to reactive oxygen species (ROS) and reactive chlorine species (RCS), which can damage proteins. In this Review, we discuss our current understanding of the reducing systems that enable bacteria to repair oxidatively damaged cysteine and methionine residues in the cytoplasm and in the bacterial cell envelope. We highlight the importance of these repair systems in bacterial physiology and virulence, and we discuss several examples of proteins that become activated by oxidation and help bacteria to respond to oxidative stress

    Oxidative stress, protein damage and repair in bacteria

    No full text

    Packaging

    No full text

    Structure Analysis

    No full text
    corecore