712 research outputs found

    Expanding the Set of Pragmatic Considerations in Conversational AI

    Full text link
    Despite considerable performance improvements, current conversational AI systems often fail to meet user expectations. We discuss several pragmatic limitations of current conversational AI systems. We illustrate pragmatic limitations with examples that are syntactically appropriate, but have clear pragmatic deficiencies. We label our complaints as "Turing Test Triggers" (TTTs) as they indicate where current conversational AI systems fall short compared to human behavior. We develop a taxonomy of pragmatic considerations intended to identify what pragmatic competencies a conversational AI system requires and discuss implications for the design and evaluation of conversational AI systems.Comment: Pre-print version of paper that appeared at Multidisciplinary Perspectives on COntext-aware embodied Spoken Interactions (MP-COSIN) workshop at IEEE RO-MAN 202

    Evaluating the Deductive Competence of Large Language Models

    Full text link
    The development of highly fluent large language models (LLMs) has prompted increased interest in assessing their reasoning and problem-solving capabilities. We investigate whether several LLMs can solve a classic type of deductive reasoning problem from the cognitive science literature. The tested LLMs have limited abilities to solve these problems in their conventional form. We performed follow up experiments to investigate if changes to the presentation format and content improve model performance. We do find performance differences between conditions; however, they do not improve overall performance. Moreover, we find that performance interacts with presentation format and content in unexpected ways that differ from human performance. Overall, our results suggest that LLMs have unique reasoning biases that are only partially predicted from human reasoning performance.Comment: 7 pages, 7 figures, under revie

    Supporting Experimentation via an Evaluation Infrastructure for Semantic Technologies

    Get PDF
    One of the challenges of the Future Internet is to manage and combine information about dierent digital and real-world entities and the characteristics of these entities, covering related issues such as the trust or provenance of this information. One way to allow an eective representation and integration of this information is to use semantic technologies to correctly manage not just these heterogeneous content and data but also their associated metadata

    eLISA Telescope In-field Pointing and Scattered Light Study

    Get PDF
    The orbital motion of the three spacecraft that make up the eLISA Observatory constellation causes long-arm line of sight variations of approximately one degree over the course of a year. The baseline solution is to package the telescope, the optical bench, and the gravitational reference sensor (GRS) into an optical assembly at each end of the measurement arm, and then to articulate the assembly. An optical phase reference is exchanged between the moving optical benches with a single mode optical fiber (backlink fiber). An alternative solution, referred to as in-field pointing, embeds a steering mirror into the optical design, fixing the optical benches and eliminating the backlink fiber, but requiring the additional complication of a two-stage optical design for the telescope. We examine the impact of an in-field pointing design on the scattered light performance

    Dietary Sodium Restriction Reverses Vascular Endothelial Dysfunction in Middle-Aged/Older Adults With Moderately Elevated Systolic Blood Pressure

    Get PDF
    ObjectivesThis study sought to determine the efficacy of dietary sodium restriction (DSR) for improving vascular endothelial dysfunction in middle-aged/older adults with moderately elevated systolic blood pressure (SBP) (130–159 mm Hg) and the associated physiological mechanisms.BackgroundVascular endothelial dysfunction develops with advancing age and elevated SBP, contributing to increased cardiovascular risk. DSR lowers BP, but its effect on vascular endothelial function and mechanisms involved are unknown.MethodsSeventeen subjects (11 men and 6 women; mean age, 62 ± 7 years) completed a, randomized crossover study of 4 weeks of both low (DSR) and normal sodium intake. Vascular endothelial function (endothelium-dependent dilation; EDD), nitric oxide (NO)/tetrahydrobiopterin (BH4) bioavailability, and oxidative stress-associated mechanisms were assessed following each condition.ResultsUrinary sodium excretion was reduced by ∌50% (to 70 ± 30 mmol/day), and conduit (brachial artery flow-mediated dilation [FMDBA]) and resistance (forearm blood flow responses to acetylcholine [FBFACh]) artery EDD were 68% and 42% (peak FBFACh) higher following DSR (p < 0.005). Low sodium markedly enhanced NO-mediated EDD (greater ΔFBFACh with endothelial NO synthase inhibition) without changing endothelial NO synthase expression/activation (Ser 1177 phosphorylation), restored BH4 bioactivity (less ΔFMDBA with acute BH4), abolished tonic superoxide suppression of EDD (less ΔFMDBA and ΔFBFACh with ascorbic acid infusion), and increased circulating superoxide dismutase activity (all p < 0.05). These effects were independent of ΔSBP. Other subject characteristics/dietary factors and endothelium-independent dilation were unchanged.ConclusionsDSR largely reversed both macro- and microvascular endothelial dysfunction by enhancing NO and BH4 bioavailability and reducing oxidative stress. Our findings support the emerging concept that DSR induces “vascular protection” beyond that attributable to its BP-lowering effects

    Superoxide Signaling in Perivascular Adipose Tissue Promotes Age-Related Artery Stiffness

    Get PDF
    We tested the hypothesis that superoxide signaling within aortic perivascular adipose tissue (PVAT) contributes to large elastic artery stiffening in old mice. Young (4-6 months), old (26-28 months), and old treated with 4-Hydroxy-2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPOL), a superoxide scavenger (1 mm in drinking water for 3 weeks), male C57BL6/N mice were studied. Compared with young, old had greater large artery stiffness assessed by aortic pulse wave velocity (aPWV, 436 ± 9 vs. 344 ± 5 cm s(-1)) and intrinsic mechanical testing (3821 ± 427 vs. 1925 ± 271 kPa) (both P \u3c 0.05). TEMPOL treatment in old reversed both measures of arterial stiffness. Aortic PVAT superoxide production was greater in old (P \u3c 0.05 vs. Y), which was normalized with TEMPOL. Compared with young, old controls had greater pro-inflammatory proteins in PVAT-conditioned media (P \u3c 0.05). Young recipient mice transplanted with PVAT from old compared with young donors for 8 weeks had greater aPWV (409 ± 7 vs. 342 ± 8 cm s(-1)) and intrinsic mechanical properties (3197 ± 647 vs. 1889 ± 520 kPa) (both P \u3c 0.05), which was abolished with TEMPOL supplementation in old donors. Tissue-cultured aortic segments from old in the presence of PVAT had greater mechanical stiffening compared with old cultured in the absence of PVAT and old with PVAT and TEMPOL (both, P \u3c 0.05). In addition, PVAT-derived superoxide was associated with arterial wall hypertrophy and greater adventitial collagen I expression with aging that was attenuated by TEMPOL. Aging or TEMPOL treatment did not affect blood pressure. Our findings provide evidence for greater age-related superoxide production and pro-inflammatory proteins in PVAT, and directly link superoxide signaling in PVAT to large elastic artery stiffness

    Mitochondria-targeted antioxidant therapy with MitoQ ameliorates aortic stiffening in old mice.

    Get PDF
    Aortic stiffening is a major independent risk factor for cardiovascular diseases, cognitive dysfunction, and other chronic disorders of aging. Mitochondria-derived reactive oxygen species are a key source of arterial oxidative stress, which may contribute to arterial stiffening by promoting adverse structural changes-including collagen overabundance and elastin degradation-and enhancing inflammation, but the potential for mitochondria-targeted therapeutic strategies to ameliorate aortic stiffening with primary aging is unknown. We assessed aortic stiffness [pulse-wave velocity (aPWV)], ex vivo aortic intrinsic mechanical properties [elastic modulus (EM) of collagen and elastin regions], and aortic protein expression in young (~6 mo) and old (~27 mo) male C57BL/6 mice consuming normal drinking water (YC and OC) or water containing mitochondria-targeted antioxidant MitoQ (250 ”M; YMQ and OMQ) for 4 wk. Both baseline and postintervention aPWV values were higher in OC vs. YC (post: 482 ± 21 vs. 420 ± 5 cm/s, P < 0.05). MitoQ had no effect in young mice but decreased aPWV in old mice (OMQ, 426 ± 20, P < 0.05 vs. OC). MitoQ did not affect age-associated increases in aortic collagen-region EM, collagen expression, or proinflammatory cytokine expression, but partially attenuated age-associated decreases in elastin region EM and elastin expression. Our results demonstrate that MitoQ reverses in vivo aortic stiffness in old mice and suggest that mitochondria-targeted antioxidants may represent a novel, promising therapeutic strategy for decreasing aortic stiffness with primary aging and, possibly, age-related clinical disorders in humans. The destiffening effects of MitoQ treatment may be at least partially mediated by attenuation/reversal of age-related aortic elastin degradation. NEW & NOTEWORTHY We show that 4 wk of treatment with the mitochondria-specific antioxidant MitoQ in mice completely reverses the age-associated elevation in aortic stiffness, assessed as aortic pulse-wave velocity. The destiffening effects of MitoQ treatment may be at least partially mediated by attenuation of age-related aortic elastin degradation. Our results suggest that mitochondria-targeted therapeutic strategies may hold promise for decreasing arterial stiffening with aging in humans, possibly decreasing the risk of many chronic age-related clinical disorders

    Analysis of Six tonB Gene Homologs in Bacteroides Fragilis Revealed That tonB3 is Essential for Survival in Experimental Intestinal Colonization and Intra-Abdominal Infection

    Get PDF
    The opportunistic, anaerobic pathogen and commensal of the human large intestinal tract, Bacteroides fragilis strain 638R, contains six predicted TonB proteins, termed TonB1-6, four ExbBs orthologs, ExbB1-4, and five ExbDs orthologs, ExbD1-5. The inner membrane TonB/ExbB/ExbD complex harvests energy from the proton motive force (Δp), and the TonB C-terminal domain interacts with and transduces energy to outer membrane TonB-dependent transporters (TBDTs). However, TonB’s role in activating nearly one hundred TBDTs for nutrient acquisition in B. fragilis during intestinal colonization and extraintestinal infection has not been established. In this study, we show that growth was abolished in the ΔtonB3 mutant when heme, vitamin B(12), Fe(III)-ferrichrome, starch, mucin-glycans, or N-linked glycans were used as a substrate for growth in vitro. Genetic complementation of the ΔtonB3 mutant with the tonB3 gene restored growth on these substrates. The ΔtonB1, ΔtonB2, ΔtonB4, ΔtonB5, and ΔtonB6 single mutants did not show a growth defect. This indicates that there was no functional compensation for the lack of TonB3, and it demonstrates that TonB3, alone, drives the TBDTs involved in the transport of essential nutrients. The ΔtonB3 mutant had a severe growth defect in a mouse model of intestinal colonization compared to the parent strain. This intestinal growth defect was enhanced in the ΔtonB3 ΔtonB6 double mutant strain, which completely lost its ability to colonize the mouse intestinal tract compared to the parent strain. The ΔtonB1, ΔtonB2, ΔtonB4, and ΔtonB5 mutants did not significantly affect intestinal colonization. Moreover, the survival of the ΔtonB3 mutant strain was completely eradicated in a rat model of intra-abdominal infection. Taken together, these findings show that TonB3 was essential for survival in vivo. The genetic organization of tonB1, tonB2, tonB4, tonB5, and tonB6 gene orthologs indicates that they may interact with periplasmic and nonreceptor outer membrane proteins, but the physiological relevance of this has not been defined. Because anaerobic fermentation metabolism yields a lower Δp than aerobic respiration and B. fragilis has a reduced redox state in its periplasmic space—in contrast to an oxidative environment in aerobes—it remains to be determined if the diverse system of TonB/ExbB/ExbD orthologs encoded by B. fragilis have an increased sensitivity to PMF (relative to aerobic bacteria) to allow for the harvesting of energy under anaerobic conditions
    • 

    corecore