989 research outputs found

    Nitrogen Use Efficiency of Late Fall-Applied Urea and Pig Slurry for Regrowth of Perennial Ryegrass Sward

    Get PDF
    Pig slurry is the most important organic resource in Korea, as estimated to be more than 15% of recycled animal manure. The use of pig slurry as an alternative organic fertilizer is the most viable recycling option as it is produced in large amount on pig farms that has usually less or not surface for cultivation of forage crops in Korea. Perennial grasses in grassland system regrow successively after harvests by cutting or grazing. The regrowth yield at each harvest would be a crucial determinant for the productivity of sward. During vegetative regrowth, soil mineral N and N reserves meet the N requirements for shoot regrowth. The aims of this study are to estimate the N use efficiency of urea and pig slurry applied at late fall in relation to the N availability for restoring organic reserves and constructing ultimate regrowth biomass during successive three cycle of regrowth of perennial ryegrass sward

    S Nutrition Is Involved in Alleviation of Damage of Photosynthetic Organelles by Salt Stress in Kentucky Bluegrass (\u3cem\u3ePoa pratensis\u3c/em\u3e L.)

    Get PDF
    Salt-stress is considered as one of the major environmental factor limiting plant growth and productivity. It has been well reported that salt stress induce the reduction of stomatal density and number leading to poor gaseous exchange which resulted in decrease of photosynthesis is associated with inhibition of several enzymes related to the Calvin cycle such as RuBisCo. In addition, salt stress decreases photosynthetic pigments such as chlorophyll and carotenoid which has important role in photosynthesis. Sulfur (S) is one of six macronutrients needed for proper plant growth and development. In our previous work, we found that sulfur nutrition has significant role in ameliorating the damaged in photosynthetic organelles caused by Fe-deficiency in oilseed rape (Muneer et al., 2014). In addition, application of sulfur mitigated the adverse effects of heavy metals stress by enhancing plant growth, chlorophyll content and net photosynthetic rate. Despite extensive researches attempting to elucidate the interactions between external sulfur supplies and stress tolerance, to our knowledge, the responses of the photosynthetic mechanism to combined S deficiency and salt stress have not yet been fully investigated. In this study, therefore, we hypothesized that S nutrition affects photosynthetic organs to salt stress, so that may involve in alleviating negative impact of salt stress in Kentucky bluegrass. To test this hypothesis, the responses of photosynthetic parameters, thylakoid protein complexes and ion uptake were compared for 21 days of four S and salt stress combined treatments; sulfur sufficient without salt stress (+S/non-salt, control), present of sulfur with salt stress (+S/salt), sulfur deprivation without salt stress (-S/non-salt) and sulfur deprivation and salt stress (-S/salt)

    Bezoar-induced Small Bowel Obstruction

    Get PDF
    Purpose: The aim of this study was to observe the clinical features of a bezoar-induced small bowel obstruction and to in-vestigate the role of abdominal computed tomography (CT) in establishing the diagnosis. Methods: We retrospectively reviewed 20 cases of bezoar-induced small bowel obstruction in our hospital from 1996 to 2010. Results: Thirteen patients (65%) had a history of abdominal surgery. Nine patients (45%) were diagnosed with a bezoar before surgery, seven patients were diagnosed by using abdominal CT, and two patients were diagnosed with a small bowel series. Abdominal CT was performed in 15 patients, and the diagnostic accuracy was 47 % (7/15). Surgery revealed ten bezoars in the jejunum and 11 in the ileum. Two patients had bezoars found concurrently in the stomach. Spontaneous removal took place in two patients. An enterotomy and bezoar extraction was performed in 15 patients. Fragmentation and milking, a small bowel resection, and a Meckel’s diverticulectomy were performed in one patient each. Early operative treatment was possible (P = 0.036) once the bezoar had been diagnosed by using abdominal CT. There tended to be fewer postoperative complications in patients who were diagnosed with a bezoar by using abdominal CT, but the result was not statistically significant (P = 0.712). Conclusion: A preoperative diagnosis of bezoar-induced small bowel obstruction by using clinical features was difficult. Increased use of abdominal CT led to a more accurate diagnosis and to earlier surgery for bezoar-induced small bowel obstructions, thereby reducing the rate of complications

    Quaternary structures of Vac8 differentially regulate the Cvt and PMN pathways.

    Get PDF
    Armadillo (ARM) repeat proteins constitute a large protein family with diverse and fundamental functions in all organisms, and armadillo repeat domains share high structural similarity. However, exactly how these structurally similar proteins can mediate diverse functions remains a long-standing question. Vac8 (vacuole related 8) is a multifunctional protein that plays pivotal roles in various autophagic pathways, including piecemeal microautophagy of the nucleus (PMN) and cytoplasm-to-vacuole targeting (Cvt) pathways in the budding yeast Saccharomyces cerevisiae. Vac8 comprises an H1 helix at the N terminus, followed by 12 armadillo repeats. Herein, we report the crystal structure of Vac8 bound to Atg13, a key component of autophagic machinery. The 70-angstrom extended loop of Atg13 binds to the ARM domain of Vac8 in an antiparallel manner. Structural, biochemical, and in vivo experiments demonstrated that the H1 helix of Vac8 intramolecularly associates with the first ARM and regulates its self-association, which is crucial for Cvt and PMN pathways. The structure of H1 helix-deleted Vac8 complexed with Atg13 reveals that Vac8[Delta 19-33]-Atg13 forms a heterotetramer and adopts an extended superhelical structure exclusively employed in the Cvt pathway. Most importantly, comparison of Vac8-Nvj1 and Vac8-Atg13 provides a molecular understanding of how a single ARM domain protein adopts different quaternary structures depending on its associated proteins to differentially regulate 2 closely related but distinct cellular pathways
    corecore