294 research outputs found

    Quantization of virtual Grothendieck rings and their structure including quantum cluster algebras

    Full text link
    The quantum Grothendieck ring of a certain category of finite-dimensional modules over a quantum loop algebra associated with a complex finite-dimensional simple Lie algebra g\mathfrak{g} has a quantum cluster algebra structure of skew-symmetric type. Partly motivated by a search of a ring corresponding to a quantum cluster algebra of {\em skew-symmetrizable} type, the quantum {\em virtual} Grothendieck ring, denoted by Kq(g)\mathfrak{K}_q(\mathfrak{g}), is recently introduced by Kashiwara--Oh \cite{KO23} as a subring of the quantum torus based on the (q,t)(q,t)-Cartan matrix specialized at q=1q=1. In this paper, we prove that Kq(g)\mathfrak{K}_q(\mathfrak{g}) indeed has a quantum cluster algebra structure of skew-symmetrizable type. This task essentially involves constructing distinguished bases of Kq(g)\mathfrak{K}_q(\mathfrak{g}) that will be used to make cluster variables and generalizing the quantum TT-system associated with Kirillov--Reshetikhin modules to establish a quantum exchange relation of cluster variables. Furthermore, these distinguished bases naturally fit into the paradigm of Kazhdan--Lusztig theory and our study of these bases leads to some conjectures on quantum positivity and qq-commutativity

    Evaluation of the added mass for a spheroid-type unmanned underwater vehicle by vertical planar motion mechanism test

    Get PDF
    ABSTRACTThis paper shows added mass and inertia can be acquired from the pure heaving motion and pure pitching motion respectively. A Vertical Planar Motion Mechanism (VPMM) test for the spheroid-type Unmanned Underwater Vehicle (UUV) was compared with a theoretical calculation and Computational Fluid Dynamics (CFD) analysis in this paper. The VPMM test has been carried out at a towing tank with specially manufactured equipment. The linear equations of motion on the vertical plane were considered for theoretical calculation, and CFD results were obtained by commercial CFD package. The VPMM test results show good agreement with theoretical calculations and the CFD results, so that the applicability of the VPMM equipment for an underwater vehicle can be verified with a sufficient accuracy

    A New Quantum-Inspired Binary PSO: Application to Unit Commitment Problems for Power Systems

    Full text link

    Quaternary structures of Vac8 differentially regulate the Cvt and PMN pathways.

    Get PDF
    Armadillo (ARM) repeat proteins constitute a large protein family with diverse and fundamental functions in all organisms, and armadillo repeat domains share high structural similarity. However, exactly how these structurally similar proteins can mediate diverse functions remains a long-standing question. Vac8 (vacuole related 8) is a multifunctional protein that plays pivotal roles in various autophagic pathways, including piecemeal microautophagy of the nucleus (PMN) and cytoplasm-to-vacuole targeting (Cvt) pathways in the budding yeast Saccharomyces cerevisiae. Vac8 comprises an H1 helix at the N terminus, followed by 12 armadillo repeats. Herein, we report the crystal structure of Vac8 bound to Atg13, a key component of autophagic machinery. The 70-angstrom extended loop of Atg13 binds to the ARM domain of Vac8 in an antiparallel manner. Structural, biochemical, and in vivo experiments demonstrated that the H1 helix of Vac8 intramolecularly associates with the first ARM and regulates its self-association, which is crucial for Cvt and PMN pathways. The structure of H1 helix-deleted Vac8 complexed with Atg13 reveals that Vac8[Delta 19-33]-Atg13 forms a heterotetramer and adopts an extended superhelical structure exclusively employed in the Cvt pathway. Most importantly, comparison of Vac8-Nvj1 and Vac8-Atg13 provides a molecular understanding of how a single ARM domain protein adopts different quaternary structures depending on its associated proteins to differentially regulate 2 closely related but distinct cellular pathways

    Risk factors for transmission in a COVID-19 cluster infection in a high school in the Republic of Korea

    Get PDF
    Objectives This study aimed to examine the scale, characteristics, risk factors, and modes of transmission in a coronavirus disease 2019 (COVID-19) outbreak at a high school in Seoul, Republic of Korea. Methods An epidemiological survey was conducted of 1,118 confirmed cases and close contacts from a COVID-19 outbreak at an educational facility starting on May 31, 2021. In-depth interviews, online questionnaires, flow evaluations, and CCTV analyses were used to devise infection prevention measures. Behavioral and spatial risk factors were identified, and statistical significance was tested. Results Among 3rd-year students, there were 33 confirmed COVID-19 cases (9.6%). Students who used a study room in the annex building showed a statistically significant 4.3-fold elevation in their relative risk for infection compared to those who did not use the study room. Moreover, CCTV facial recognition analysis confirmed that 17.8% of 3rd-year students did not wear masks and had the lowest percentage of mask-wearers by grade. The air epidemiological survey conducted in the study room in the annex, which met the 3 criteria for a closed space, confirmed that there was only 10% natural ventilation due to the poor ventilation system. Conclusion To prevent and manage the spread of COVID-19 in educational facilities, advance measures that consider the size, operation, and resources of each school are crucial. In addition, various survey methodologies should be used in future studies to quickly analyze a wider range of data that can inform an evidence-based quarantine response

    Recent Progress on Polymeric Binders for Silicon Anodes in Lithium-Ion Batteries

    Get PDF
    Advanced polymeric binders with unique functions such as improvements in the electronic conduction network, mechanical adhesion, and mechanical durability during cycling have recently gained an increasing amount of attention as a promising means of creating high-performance silicon (Si) anodes in lithium-ion batteries with high energy density levels. In this review, we describe the key challenges of Si anodes, particularly highlighting the recent progress in the area of polymeric binders for Si anodes in cellsopen

    The role of nafamostat mesilate as a regional anticoagulant during extracorporeal membrane oxygenation

    Get PDF
    Background Anticoagulation during extracorporeal membrane oxygenation (ECMO) usually is required to prevent thrombosis. The aim of this study was to investigate the usefulness of nafamostat mesilate (NM) as a regional anticoagulant during veno-arterial ECMO (VA-ECMO) treatment. Methods We retrospectively reviewed the medical records of 16 patients receiving VA-ECMO and NM from January 2017 to June 2020 at Haeundae Paik Hospital. We compared clinical and laboratory data, including activated partial thromboplastin time (aPTT), which was measured simultaneously in patients and the ECMO site, to estimate the efficacy of regional anticoagulation. Results The median patient age was 68.5 years, and 56.3% of patients were men. Cardiovascular disease was the most common primary disease (75.0%) requiring ECMO treatment, followed by respiratory disease (12.5%). The median duration of ECMO treatment was 7.5 days. Among 16 patients, seven were switched to NM after first using heparin as an anticoagulation agent, and nine received only NM. When comparing aPTT values in the NM group between patients and the ECMO site, that in patients was significantly lower than that at the ECMO site (73.57 vs. 79.25 seconds; P=0.010); in contrast, no difference was observed in the heparin group. Conclusions NM showed efficacy as a regional anticoagulation method by sustaining a lower aPTT value compared to that measured at the ECMO site. NM should be considered as a safer regional anticoagulation method in VA-ECMO for patients at high risk of bleeding
    corecore