7 research outputs found

    A lineage-specific protein network at the trypanosome nuclear envelope

    Get PDF
    The nuclear envelope (NE) separates translation and transcription and is the location of multiple functions, including chromatin organization and nucleocytoplasmic transport. The molecular basis for many of these functions have diverged between eukaryotic lineages. Trypanosoma brucei, a member of the early branching eukaryotic lineage Discoba, highlights many of these, including a distinct lamina and kinetochore composition. Here, we describe a cohort of proteins interacting with both the lamina and NPC, which we term lamina-associated proteins (LAPs). LAPs represent a diverse group of proteins, including two candidate NPC-anchoring pore membrane proteins (POMs) with architecture conserved with S. cerevisiae and H. sapiens, and additional peripheral components of the NPC. While many of the LAPs are Kinetoplastid specific, we also identified broadly conserved proteins, indicating an amalgam of divergence and conservation within the trypanosome NE proteome, highlighting the diversity of nuclear biology across the eukaryotes, increasing our understanding of eukaryotic and NPC evolution.</p

    Vaccinia Virus BBK E3 Ligase Adaptor A55 Targets Importin-Dependent NF-κB Activation and Inhibits CD8+ T-Cell Memory.

    Get PDF
    Viral infection of cells is sensed by pathogen recognition receptors that trigger an antiviral innate immune response, and consequently viruses have evolved countermeasures. Vaccinia virus (VACV) evades the host immune response by expressing scores of immunomodulatory proteins. One family of VACV proteins are the BTB-BACK (broad-complex, tram-trac, and bric-a-brac [BTB] and C-terminal Kelch [BACK]) domain-containing, Kelch-like (BBK) family of predicted cullin-3 E3 ligase adaptors: A55, C2, and F3. Previous studies demonstrated that gene A55R encodes a protein that is nonessential for VACV replication yet affects viral virulence in vivo Here, we report that A55 is an NF-κB inhibitor acting downstream of IκBα degradation, preventing gene transcription and cytokine secretion in response to cytokine stimulation. A55 targets the host importin α1 (KPNA2), acting to reduce p65 binding and its nuclear translocation. Interestingly, while A55 was confirmed to coprecipitate with cullin-3 in a BTB-dependent manner, its NF-κB inhibitory activity mapped to the Kelch domain, which alone is sufficient to coprecipitate with KPNA2 and inhibit NF-κB signaling. Intradermal infection of mice with a virus lacking A55R (vΔA55) increased VACV-specific CD8+ T-cell proliferation, activation, and cytotoxicity in comparison to levels of the wild-type (WT) virus. Furthermore, immunization with vΔA55 induced increased protection to intranasal VACV challenge compared to the level with control viruses. In summary, this report describes the first target of a poxvirus-encoded BBK protein and a novel mechanism for DNA virus immune evasion, resulting in increased CD8+ T-cell memory and a more immunogenic vaccine.IMPORTANCE NF-κB is a critical transcription factor in the innate immune response to infection and in shaping adaptive immunity. The identification of host and virus proteins that modulate the induction of immunological memory is important for improving virus-based vaccine design and efficacy. In viruses, the expression of BTB-BACK Kelch-like (BBK) proteins is restricted to poxviruses and conserved within them, indicating the importance of these proteins for these medically important viruses. Using vaccinia virus (VACV), the smallpox vaccine, we report that the VACV BBK protein A55 dysregulates NF-κB signaling by disrupting the p65-importin interaction, thus preventing NF-κB translocation and blocking NF-κB-dependent gene transcription. Infection with VACV lacking A55 induces increased VACV-specific CD8+ T-cell memory and better protection against VACV challenge. Studying viral immunomodulators therefore expands not only our understanding of viral pathogenesis and immune evasion strategies but also of the immune signaling cascades controlling antiviral immunity and the development of immune memory.Wellcome Trus

    Identification of a lineage-specific protein network at the trypanosome nuclear envelope

    No full text
    The nuclear envelope (NE) separates translation and transcription and is the location of multiple functions, including chromatin organization, nucleocytoplasmic transport, ribosomal maturation and mRNA processing/quality control. The molecular basis for many of these functions have diverged between different eukaryotic lineages. Trypanosoma brucei, a member of the early branching eukaryotic lineage Discoba, highlight many of these, including a distinct lamina and kinetochore composition. Here we describe a cohort of proteins interacting with both the lamina and NPC, which we term lamina-associated proteins (LAPs). LAPs represent a diverse group of proteins, including two candidate NPC-anchoring pore membrane proteins (POMs) with architecture conserved with S. cerevisiae Pom152 and H. sapiens Nup210, and additional peripheral components of the NPC. While many of the LAPs are specific to Trypanosomatids, we also identified broadly conserved proteins, indicating an amalgam of divergence and conservation within the NE proteome of trypanosomes, highlighting the diversity of nuclear biology across the eukaryotes and increasing our understanding of eukaryotic and NPC evolution

    Vaccinia Virus BBK E3 Ligase Adaptor A55 Targets Importin-Dependent NF-κB Activation and Inhibits CD8+ T-Cell Memory

    Get PDF
    Viral infection of cells is sensed by pathogen recognition receptors that trigger an antiviral innate immune response, and consequently viruses have evolved countermeasures. Vaccinia virus (VACV) evades the host immune response by expressing scores of immunomodulatory proteins. One family of VACV proteins are the BTB-BACK (broad-complex, tram-trac, and bric-a-brac [BTB] and C-terminal Kelch [BACK]) domain-containing, Kelch-like (BBK) family of predicted cullin-3 E3 ligase adaptors: A55, C2, and F3. Previous studies demonstrated that gene A55R encodes a protein that is nonessential for VACV replication yet affects viral virulence in vivo. Here, we report that A55 is an NF-κB inhibitor acting downstream of IκBα degradation, preventing gene transcription and cytokine secretion in response to cytokine stimulation. A55 targets the host importin α1 (KPNA2), acting to reduce p65 binding and its nuclear translocation. Interestingly, while A55 was confirmed to coprecipitate with cullin-3 in a BTB-dependent manner, its NF-κB inhibitory activity mapped to the Kelch domain, which alone is sufficient to coprecipitate with KPNA2 and inhibit NF-κB signaling. Intradermal infection of mice with a virus lacking A55R (vΔA55) increased VACV-specific CD8+ T-cell proliferation, activation, and cytotoxicity in comparison to levels of the wild-type (WT) virus. Furthermore, immunization with vΔA55 induced increased protection to intranasal VACV challenge compared to the level with control viruses. In summary, this report describes the first target of a poxvirus-encoded BBK protein and a novel mechanism for DNA virus immune evasion, resulting in increased CD8+ T-cell memory and a more immunogenic vaccine

    DNA-PK Is Targeted by Multiple Vaccinia Virus Proteins to Inhibit DNA Sensing.

    Get PDF
    Virus infection is sensed by pattern recognition receptors (PRRs) detecting virus nucleic acids and initiating an innate immune response. DNA-dependent protein kinase (DNA-PK) is a PRR that binds cytosolic DNA and is antagonized by vaccinia virus (VACV) protein C16. Here, VACV protein C4 is also shown to antagonize DNA-PK by binding to Ku and blocking Ku binding to DNA, leading to a reduced production of cytokines and chemokines in vivo and a diminished recruitment of inflammatory cells. C4 and C16 share redundancy in that a double deletion virus has reduced virulence not seen with single deletion viruses following intradermal infection. However, non-redundant functions exist because both single deletion viruses display attenuated virulence compared to wild-type VACV after intranasal infection. It is notable that VACV expresses two proteins to antagonize DNA-PK, but it is not known to target other DNA sensors, emphasizing the importance of this PRR in the response to infection in vivo.Wellcome Trust (090315) Lister Institut
    corecore