2,727 research outputs found

    Ultra-bright omni-directional collective emission of correlated photon pairs from atomic vapors

    Full text link
    Spontaneous four-wave mixing can generate highly correlated photon pairs from atomic vapors. We show that multi-photon pumping of dipole-forbidden transitions in a recoil-free geometry can result in ultra-bright pair-emission in the full 4\pi solid angle, while strongly suppresses background Rayleigh scattering and associated atomic heating, Such a system can produce photon pairs at rates of ~ 10 ^12 per second, given only moderate optical depths of 10 ~ 100, or alternatively, the system can generate paired photons with sub-natural bandwidths at lower production rates. We derive a rate-equation based theory of the collective atomic population and coherence dynamics, and present numerical simulations for a toy model, as well as realistic model systems based on 133 Cs and 171 Yb level structures. Lastly, we demonstrate that dark-state adiabatic following (EIT) and/or timescale hierarchy protects the paired photons from reabsorption as they propagate through an optically thick sample

    Condensation of N interacting bosons: Hybrid approach to condensate fluctuations

    Get PDF
    We present a new method of calculating the distribution function and fluctuations for a Bose-Einstein condensate (BEC) of N interacting atoms. The present formulation combines our previous master equation and canonical ensemble quasiparticle techniques. It is applicable both for ideal and interacting Bogoliubov BEC and yields remarkable accuracy at all temperatures. For the interacting gas of 200 bosons in a box we plot the temperature dependence of the first four central moments of the condensate particle number and compare the results with the ideal gas. For the interacting mesoscopic BEC, as with the ideal gas, we find a smooth transition for the condensate particle number as we pass through the critical temperature.Comment: 6 pages, 4 figures, to appear in Phys. Rev. Let

    Early Stage of Superradiance from Bose-Einstein Condensates

    Full text link
    We investigate the dynamics of matter and optical waves at the early stage of superradiant Rayleigh scattering from Bose-Einstein Condensates. Our analysis is within a spatially dependent quantum model which is capable of providing analytic solutions for the operators of interest. The predictions of the present model are compared to the predictions of a closely related mean field model, and we provide a procedure that allows one to calculate quantum expectation values by averaging over semiclassical solutions. The coherence properties of the outgoing scattered light are also analyzed, and it is shown that the corresponding correlation functions may provide detailed information about the internal dynamics of the system.Comment: 27 pages, 8 figure

    Decoherence in a system of many two--level atoms

    Full text link
    I show that the decoherence in a system of NN degenerate two--level atoms interacting with a bosonic heat bath is for any number of atoms NN governed by a generalized Hamming distance (called ``decoherence metric'') between the superposed quantum states, with a time--dependent metric tensor that is specific for the heat bath.The decoherence metric allows for the complete characterization of the decoherence of all possible superpositions of many-particle states, and can be applied to minimize the over-all decoherence in a quantum memory. For qubits which are far apart, the decoherence is given by a function describing single-qubit decoherence times the standard Hamming distance. I apply the theory to cold atoms in an optical lattice interacting with black body radiation.Comment: replaced with published versio

    Analytical solution to position dependent mass Schr\"odinger equation

    Full text link
    Using a recently developed technique to solve Schr\"odinger equation for constant mass, we studied the regime in which mass varies with position i.e position dependent mass Schr\"odinger equation(PDMSE). We obtained an analytical solution for the PDMSE and applied our approach to study a position dependent mass m(x)m(x) particle scattered by a potential V(x)\mathcal{V}(x). We also studied the structural analogy between PDMSE and two-level atomic system interacting with a classical field.Comment: 5 pages, 4 figure

    Improved qubit bifurcation readout in the straddling regime of circuit QED

    Full text link
    We study bifurcation measurement of a multi-level superconducting qubit using a nonlinear resonator biased in the straddling regime, where the resonator frequency sits between two qubit transition frequencies. We find that high-fidelity bifurcation measurements are possible because of the enhanced qubit-state-dependent pull of the resonator frequency, the behavior of qubit-induced nonlinearities and the reduced Purcell decay rate of the qubit that can be realized in this regime. Numerical simulations find up to a threefold improvement in qubit readout fidelity when operating in, rather than outside of, the straddling regime. High-fidelity measurements can be obtained at much smaller qubit-resonator couplings than current typical experimental realizations, reducing spectral crowding and potentially simplifying the implementation of multi-qubit devices.Comment: 9 pages, 6 figure

    Momentum transfer for momentum transfer-free which-path experiments

    Get PDF
    We analyze the origin of interference disappearance in which-path double aperture experiments. We show that we can unambiguously define an observable momentum transfer between the quantum particle and the path detector and we prove in particular that the so called ``momentum transfer free'' experiments can be in fact logically interpreted in term of momentum transfer.Comment: to appear in Phys. Rev . A (2006). (7 pages, 2 figures

    Teleportation of entangled states without Bell-state measurement

    Full text link
    In a recent paper [Phys. Rev. A 70, 025803 (2004)] we presented a scheme to teleport an entanglement of zero- and one-photon states from a bimodal cavity to another one, with 100% success probability. Here, inspired on recent results in the literature, we have modified our previous proposal to teleport the same entangled state without using Bell-state measurements. For comparison, the time spent, the fidelity, and the success probability for this teleportation are considered.Comment: 4 pages, 1 figure, published in Phys. Rev. A 72, 045802 (2005

    Accuracy of a teleported trapped field state inside a single bimodal cavity

    Full text link
    We propose a simplified scheme to teleport a superposition of coherent states from one mode to another of the same bimodal lossy cavity. Based on current experimental capabilities, we present a calculation of the fidelity that can be achieved, demonstrating accurate teleportation if the mean photon number of each mode is at most 1.5. Our scheme applies as well for teleportation of coherent states from one mode of a cavity to another mode of a second cavity, both cavities embedded in a common reservoir.Comment: 4 pages, 2 figures, in appreciation for publication in Physical Review
    • …
    corecore