3,565 research outputs found
From EIT photon correlations to Raman anti-correlations in coherently prepared Rb vapor
We have experimentally observed switching between photon-photon correlations
(bunching) and anti-correlations (anti-bunching) between two orthogonally
polarized laser beams in an EIT configuration in Rb vapor. The bunching and
anti-bunching sswitching occurs at a specific magnetic field strength.Comment: 4 pages and 3 figure
Quantum limit of optical magnetometry in the presence of ac-Stark shifts
We analyze systematic (classical) and fundamental (quantum) limitations of
the sensitivity of optical magnetometers resulting from ac-Stark shifts. We
show that in contrast to absorption-based techniques, the signal reduction
associated with classical broadening can be compensated in magnetometers based
on phase measurements using electromagnetically induced transparency (EIT).
However due to ac-Stark associated quantum noise the signal-to-noise ratio of
EIT-based magnetometers attains a maximum value at a certain laser intensity.
This value is independent on the quantum statistics of the light and defines a
standard quantum limit of sensitivity. We demonstrate that an EIT-based optical
magnetometer in Faraday configuration is the best candidate to achieve the
highest sensitivity of magnetic field detection and give a detailed analysis of
such a device.Comment: 11 pages, 4 figure
Radiation trapping in coherent media
We show that the effective decay rate of Zeeman coherence, generated in a
Rb87 vapor by linearly polarized laser light, increases significantly with the
atomic density. We explain this phenomenon as the result of radiation trapping.
Our study shows that radiation trapping must be taken into account to fully
understand many electromagnetically induced transparency experiments with
optically thick media
Dynamics of a two-level system coupled with a quantum oscillator in the very strong coupling limit
The time-dependent behavior of a two-level system interacting with a quantum
oscillator system is analyzed in the case of a coupling larger than both the
energy separation between the two levels and the energy of quantum oscillator
(, where is the frequency of the
transition between the two levels, is the frequency of the
oscillator, and is the coupling between the two-level system and the
oscillator). Our calculations show that the amplitude of the expectation value
of the oscillator coordinate decreases as the two-level system undergoes the
transition from one level to the other, while the transfer probability between
the levels is staircase-like. This behavior is explained by the interplay
between the adiabatic and the non-adiabatic regimes encountered during the
dynamics with the system acting as a quantum counterpart of the Landau-Zener
model. The transition between the two levels occurs as long as the expectation
value of the oscillator coordinate is driven close to zero. On the contrary, if
the initial conditions are set such that the expectation values of the
oscillator coordinate are far from zero, the system will remain locked on one
level.Comment: 4 pages, 4 figures, to be published in Physical Review
Coherence properties of the microcavity polariton condensate
A theoretical model is presented which explains the dominant decoherence
process in a microcavity polariton condensate. The mechanism which is invoked
is the effect of self-phase modulation, whereby interactions transform
polariton number fluctuations into random energy variations. The model shows
that the phase coherence decay, g1(t), has a Kubo form, which can be Gaussian
or exponential, depending on whether the number fluctuations are slow or fast.
This fluctuation rate also determines the decay time of the intensity
correlation function, g2(t), so it can be directly determined experimentally.
The model explains recent experimental measurements of a relatively fast
Gaussian decay for g1(t), but also predicts a regime, further above threshold,
where the decay is much slower.Comment: 5 pages, 1 figur
Witnessing Entanglement with Second-Order Interference
Second-order interference and Hanbury-Brown and Twiss type experiments can
provide an operational framework for the construction of witness operators that
can test classical and nonclassical properties of a Gaussian squeezed state
(GSS), and provide entanglement witness operators to study the separability
properties of correlated Gaussian squeezed sates.Comment: 10 pages, 12 figure
Zeno and Anti Zeno effect for a two level system in a squeezed bath
We discuss the appearance of Zeno (QZE) or anti-Zeno (QAE) effect in an
exponentially decaying system. We consider the quantum dynamics of a
continuously monitored two level system interacting with a squeezed bath. We
find that the behavior of the system depends critically on the way in which the
squeezed bath is prepared. For specific choices of the squeezing phase the
system shows Zeno or anti-Zeno effect in conditions for which it would decay
exponentially if no measurements were done. This result allows for a clear
interpretation in terms of the equivalent spin system interacting with a
fictitious magnetic field.Comment: 18 pages, 7 figures;added references for section 4;changes in the
nomenclatur
- …