324 research outputs found

    The cospectrum of stress-carrying turbulence in the presence of surface gravity waves

    Get PDF
    Author Posting. © American Meteorological Society, 2017. This article is posted here by permission of American Meteorological Society for personal use, not for redistribution. The definitive version was published in Journal of Physical Oceanography 48 (2018): 29-44, doi:10.1175/JPO-D-17-0016.1.The cospectrum of the horizontal and vertical turbulent velocity fluctuations, an essential tool for understanding measurements of the turbulent Reynolds shear stress, often departs in the ocean from the shape that has been established in the atmospheric surface layer. Here, we test the hypothesis that this departure is caused by advection of standard boundary layer turbulence by the random oscillatory velocities produced by surface gravity waves. The test is based on a model with two elements. The first is a representation of the spatial structure of the turbulence, guided by rapid distortion theory, and consistent with the one-dimensional cospectra that have been measured in the atmosphere. The second model element is a map of the spatial structure of the turbulence to the temporal fluctuations measured at fixed sensors, assuming advection of frozen turbulence by the velocities associated with surface waves. The model is adapted to removal of the wave velocities from the turbulent fluctuations using spatial filtering. The model is tested against previously published laboratory measurements under wave-free conditions and two new sets of measurements near the seafloor in the coastal ocean in the presence of waves. Although quantitative discrepancies exist, the model captures the dominant features of the laboratory and field measurements, suggesting that the underlying model physics are sound.This research was supported by National Science Foundation Ocean Sciences Division Award 1356060 and the U.S. Geological Survey Coastal and Marine Geology Program

    A High Throughput Aqueous Passivation Testing Methodology for Compositionally Complex Alloys using Scanning Droplet Cell

    Full text link
    Compositionally complex alloy systems containing more than five principal elements allow exploring a wide range of compositions, processing, and structural variables with the hope for identifying unique properties. Such opportunities also apply to designing materials for improved corrosion resistance, regulated by a self-healing passive film. Such a rich landscape in reactivity and protectivity demands the search for high-throughput experimental testing workflows to uncover key metrics, indicative of superior properties. In this communication, one such methodology is demonstrated for evaluating passivation performance of a combinatorial library of Al0.7-x-yCoxCryFe0.15Ni0.15 thin film alloys in deaerated 0.1 mol/L H2SO4(aq), using a scanning droplet cell

    Comparative Benchmark Dose Modeling as a Tool to Make the First Estimate of Safe Human Exposure Levels to Lunar Dust

    Get PDF
    Brief exposures of Apollo Astronauts to lunar dust occasionally elicited upper respiratory irritation; however, no limits were ever set for prolonged exposure ot lunar dust. Habitats for exploration, whether mobile of fixed must be designed to limit human exposure to lunar dust to safe levels. We have used a new technique we call Comparative Benchmark Dose Modeling to estimate safe exposure limits for lunar dust collected during the Apollo 14 mission

    NASA-UVA Light Aerospace Alloy and Structures Technology Program (LA2ST)

    Get PDF
    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA2ST) Program was initiated in 1986 and continues with a high level of activity. The objective of the LA2ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light-weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, environmental/corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement and modeling advances; and a pool of educated graduate students for aerospace technologies. Three research areas are being actively investigated, including: (1) Mechanical and environmental degradation mechanisms in advanced light metals, (2) Aerospace materials science, and (3) Mechanics of materials for light aerospace structures

    Effect of laser surface treatment on the corrosion and fatigue performance of aa5456-h116 alloys

    Get PDF
    Please click Additional Files below to see the full abstract

    A reservoir for inverse power law decoherence of a qubit

    Full text link
    The exact dynamics of a Jaynes-Cummings model for a qubit interacting with a continuous distribution of bosons, characterized by a special form of the spectral density, is evaluated analytically. The special reservoir is designed to induce anomalous decoherence, resulting in an inverse power law relaxation, of power 3/2, over an evaluated long time scale. If compared to the exponential-like relaxation obtained from the original Jaynes-Cummings model for Lorentzian-type spectral density functions, decoherence is strongly suppressed. The special reservoir exhibits an upper band edge frequency coinciding with the qubit transition frequency. Known theoretical models of photonic band gap media suitable for the realization of the designed reservoir are proposed.Comment: 5 pages, 2 figure

    Direct measurements of mean Reynolds stress and ripple roughness in the presence of energetic forcing by surface waves

    Get PDF
    Author Posting. © American Geophysical Union, 2018. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Oceans 123 (2018): 2494-2512, doi:10.1002/2017JC013252.Direct covariance observations of the mean flow Reynolds stress and sonar images of the seafloor collected on a wave‐exposed inner continental shelf demonstrate that the drag exerted by the seabed on the overlying flow is consistent with boundary layer models for wave‐current interaction, provided that the orientation and anisotropy of the bed roughness are appropriately quantified. Large spatial and temporal variations in drag result from nonequilibrium ripple dynamics, ripple anisotropy, and the orientation of the ripples relative to the current. At a location in coarse sand characterized by large two‐dimensional orbital ripples, the observed drag shows a strong dependence on the relative orientation of the mean current to the ripple crests. At a contrasting location in fine sand, where more isotropic sub‐orbital ripples are observed, the sensitivity of the current to the orientation of the ripples is reduced. Further, at the coarse site under conditions when the currents are parallel to the ripple crests and the wave orbital diameter is smaller than the wavelength of the relic orbital ripples, the flow becomes hydraulically smooth. This transition is not observed at the fine site, where the observed wave orbital diameter is always greater than the wavelength of the observed sub‐orbital ripples. Paradoxically, the dominant along‐shelf flows often experience lower drag at the coarse site than at the fine site, despite the larger ripples, highlighting the complex dynamics controlling drag in wave‐exposed environments with heterogeneous roughness.National Science Foundation Ocean Sciences Division Award Grant Number: 1356060; U.S. Geological Survey Coastal and Marine Geology Program2018-09-2

    NASA-UVA Light Aerospace Alloy and Structures Technology Program: LA(2)ST

    Get PDF
    The NASA-UVA Light Aerospace Alloy and Structures Technology (LA(2)ST) Program continues a high level of activity, with projects being conducted by graduate students and faculty advisors in the Departments of Materials Science and Engineering, Civil Engineering and Applied Mechanics, and Mechanical and Aerospace Engineering at the University of Virginia. This work is funded by the NASA-Langley Research Center under Grant NAG-1-745. We report on progress achieved between July 1 and December 31, 1992. The objective of the LA(2)ST Program is to conduct interdisciplinary graduate student research on the performance of next generation, light weight aerospace alloys, composites and thermal gradient structures in collaboration with NASA-Langley researchers. Specific technical objectives are presented for each research project. We generally aim to produce relevant data and basic understanding of material mechanical response, corrosion behavior, and microstructure; new monolithic and composite alloys; advanced processing methods; new solid and fluid mechanics analyses; measurement advances; and critically, a pool of educated graduate students for aerospace technologies
    corecore