24 research outputs found

    Hypoxia During Resistance Exercise Does Not Affect Physical Performance, Perceptual Responses, or Neuromuscular Recovery.

    Full text link
    Scott, BR, Slattery, KM, Sculley, DV, and Dascombe, BJ. Hypoxia during resistance exercise does not affect physical performance, perceptual responses, or neuromuscular recovery. J Strength Cond Res 32(8): 2174-2182, 2018-This study aimed to determine whether performing resistance exercise in hypoxia affects markers of physical performance, perceptual responses, and neuromuscular function. Fourteen male subjects (age: 24.6 ± 2.7 years; height: 179.7 ± 5.9 cm; body mass: 84.6 ± 11.6 kg) with >2 years resistance training experience performed moderate-load resistance exercise in 2 conditions: normoxia (FIO2 = 0.21) and hypoxia (FIO2 = 0.16). Resistance exercise comprised 3 sets of 10 repetitions of back squats and deadlifts at 60% of 1 repetition maximum (1RM), with 60 seconds inter-set rest. Physical performance was assessed by quantifying velocity and power variables during all repetitions. Perceptual ratings of perceived exertion, physical fatigue, muscle soreness, and overall well-being were obtained during and after exercise. Neuromuscular performance was assessed by vertical jump and isometric mid-thigh pull (IMTP) tasks for up to 48 hours after exercise. Although physical performance declined across sets, there were no differences between conditions. Similarly, perceived exertion and fatigue scores were not different between conditions. Muscle soreness increased from baseline at 24 and 48 hours after exercise in both conditions (p ≤ 0.001). Jump height and IMTP peak force were decreased from baseline immediately after exercise (p ≤ 0.026), but returned to preexercise values after 24 hours. These findings suggest that hypoxic resistance exercise does not affect exercise performance or perceived exercise intensity. In addition, neuromuscular recovery and perceptual markers of training stress were not affected by hypoxia, suggesting that hypoxic resistance training may not add substantially to the training dose experienced

    Reliability of telemetric electromyography and near-infrared spectroscopy during high-intensity resistance exercise

    Get PDF
    This study quantified the inter- and intra-test reliability of telemetric surface electromyography (EMG) and near infrared spectroscopy (NIRS) during resistance exercise. Twelve well-trained young men performed high-intensity back squat exercise (12 sets at 70-90% 1-repetition maximum) on two occasions, during which EMG and NIRS continuously monitored muscle activation and oxygenation of the thigh muscles. Intra-test reliability for EMG and NIRS variables was generally higher than inter-test reliability. EMG median frequency variables were generally more reliable than amplitude-based variables. The reliability of EMG measures was not related to the intensity or number of repetitions performed during the set. No notable differences were evident in the reliability of EMG between different agonist muscles. NIRS-derived measures of oxyhaemoglobin, deoxyhaemoglobin and tissue saturation index were generally more reliable during single-repetition sets than multiple-repetition sets at the same intensity. Tissue saturation index was the most reliable NIRS variable. Although the reliability of the EMG and NIRS measures varied across the exercise protocol, the precise causes of this variability are not yet understood. However, it is likely that biological variation during multi-joint isotonic resistance exercise may account for some of the variation in the observed results. © 2014 Elsevier Ltd

    Acute Physiological Responses to Moderate-Load Resistance Exercise in Hypoxia

    Full text link
    © 2016 National Strength and Conditioning Association. Scott, BR, Slattery, KM, Sculley, DV, Lockhart, C, and Dascombe, BJ. Acute physiological responses to moderate-load resistance exercise in hypoxia. J Strength Cond Res 31(7): 1973-1981, 2017-This study assessed whether hypoxia augments anabolic responses to moderate-load resistance exercise. Fourteen trained men performed moderate-load resistance exercise in normoxia (NORM; fraction of inspired oxygen [FIO2] = 21%) and moderate-level hypoxia (MH; FIO2 = 16%). Exercise comprised 3 sets of 10 repetitions of squats and deadlifts at 60% of 1 repetition maximum, with 60-second interset rest. Blood lactate (BLa-) was quantified after each exercise, whereas arterial oxygen saturation and heart rate (HR) were assessed after each set. Thigh circumference was measured before and after exercise. Muscle activation and oxygenation were monitored by surface electromyography (EMG) and near-infrared spectroscopy, respectively. Relative BLa- concentrations were significantly higher following squats (p = 0.041) and deadlifts (p = 0.002) in MH than NORM. Arterial oxygen saturation was lower after each set in MH compared with NORM (p < 0.001), although HR and thigh circumference were not different between conditions. Integrated EMG was higher in MH than in NORM for the squat during several repetitions (p ≤ 0.032). Measures of muscle oxygen status were not significantly different between conditions (p ≥ 0.247). The main findings from this study suggest that hypoxia during moderate-load resistance exercise augments metabolite accumulation and muscle activation. However, a significant hypoxic dose was not measured at the muscle, possibly because of the moderate level of hypoxia used. The current data support previous hypotheses that have suggested hypoxia can augment some physiological responses that are important for muscular development, and may therefore provide benefit over the equivalent training in normoxia

    Physical performance during high-intensity resistance exercise in normoxic and hypoxic conditions

    Get PDF
    © 2015 National Strength and Conditioning Association. This study aimed to determine whether different levels of hypoxia affect physical performance during high-intensity resistance exercise or subsequent cardiovascular and perceptual responses. Twelve resistance-trained young men (age, 25.3 ± 4.3 years; height, 179.0 ± 4.5 cm; body mass, 83.4 ± 9.1 kg) were tested for 1 repetition maximum (1RM) in the back squat and deadlift. Following this, participants completed 3 separate randomized trials of 5 × 5 repetitions at 80% 1RM, with 3 minutes rest between sets, in normoxia (NORM; fraction of inspired oxygen [F I O 2 ] 0.21), moderate-level hypoxia (F I O 2 0.16), or high-level hypoxia (F I O 2 0.13) by a portable hypoxic unit. Peak and mean force and power variables were monitored during exercise. Arterial oxygen saturation (SpO 2), heart rate (HR), and rating of perceived exertion (RPE) were assessed immediately following each set. No differences in force or power variables were evident between conditions. Similar trends were evident in these variables across each set and across the exercise session in each condition. SpO 2 was lower in hypoxic conditions than in NORM, whereas HR was higher following sets performed in hypoxia. There were no differences between conditions in RPE. These results indicate that a hypoxic stimulus during high-intensity resistance exercise does not alter physical performance during repetitions and sets or affect how strenuous exercise is perceived to be. This novel training strategy can be used without adversely affecting the physical training dose experienced and may provide benefits over the equivalent training in NORM

    Acute physiological and perceptual responses to high-load resistance exercise in hypoxia

    Full text link
    © 2017 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd This study assessed whether hypoxia during high-load resistance exercise could enhance the acute physiological responses related to muscular development. Twelve trained men performed exercise in three conditions: normoxia (fraction of inspired oxygen [FIO2] = 21%), moderate-level hypoxia (FIO2 = 16%) and high-level hypoxia (FIO2 = 13%). Exercise comprised high-load squats and deadlifts (5 × 5 using 80% of 1-repetition maximum with 180-s rest). Muscle oxygenation and activation were monitored during exercise. Metabolic stress was estimated via capillary blood sampling. Perceived fatigue and soreness were also quantified following exercise. While the hypoxic conditions appeared to affect muscle oxygenation, significant differences between conditions were only noted for maximal deoxyhaemoglobin in the deadlift (P = 0·009). Blood lactate concentration increased from 1·1 to 1·2 mmol l−1 at baseline to 9·5–9·8 mmol l−1 after squats and 10·4–10·5 mmol l−1 after deadlifts (P≤0·001), although there were no between-condition differences. Perceived fatigue and muscle soreness were significantly elevated immediately and at 24 h following exercise, respectively, by similar magnitudes in all conditions (P≤0·001). Muscle activation did not differ between conditions. While metabolic stress is thought to moderate muscle activation and subsequent muscular development during hypoxic resistance training, it is not augmented during traditional high-load exercise. This may be explained by the low number of repetitions performed and the long interset rest periods employed during this training. These findings suggest that high-load resistance training might not benefit from additional hypoxia as has been shown for low- and moderate-load training

    The validity and reliability of a customized rigid supportive harness during smith machine back squat exercise

    Get PDF
    Scott, BR, Dascombe, BJ, Delaney, JA, Elsworthy, N, Lockie, RG, Sculley, DV, and Slattery, KM. The validity and reliability of a customized rigid supportive harness during Smith machine back squat exercise. J Strength Cond Res 28(3): 636-642, 2014- Although the back squat exercise is commonly prescribed to both athletic and clinical populations, individuals with restricted glenohumeral mobility may be unable to safely support the bar on the upper trapezius using their hands. The aims of this study were to investigate the validity and reliability of a back squat variation using a rigid supportive harness that does not require unrestricted glenohumeral mobility for quantifying 1 repetition maximum (1RM). Thirteen young men (age = 25.3 ± 4.5 years, height = 179.2 ± 6.9 cm, and body mass = 86.6 ± 12.0 kg) with at least 2 years resistance training experience volunteered to participate in the study. Subjects reported to the lab on 3 occasions, each separated by 1 week. During testing sessions, subjects were assessed for 1RM using the traditional back squat (session 1) and harness back squat (HBS; sessions 2 and 3) exercises. Mean 1RM for the traditional back squat, and 2 testing sessions of the HBS (HBS1 and HBS2) were 148.4 ± 25.0 kg, 152.5 ± 25.7 kg, and 150.4 ± 22.6 kg, respectively. Back squat and mean HBS 1RM scores were very strongly correlated (r = 0.96; p ≥ 0.001). There were no significant differences in 1RM scores between the 3 trials. The test-retest 1RM scores with the HBS demonstrated high reliability, with an intraclass correlation coefficient of 0.98 (95% confidence interval [CI] = 0.93-0.99), and a coefficient of variation of 2.6% (95% CI = 1.9-4.3). Taken together, these data suggest that the HBS exercise is a valid and reliable method for assessing 1RM in young men with previous resistance training experience and may be useful for individuals with restricted glenohumeral mobility. © 2014 National Strength and Conditioning Association

    The validity and reliability of a customized rigid supportive harness during smith machine back squat exercise

    No full text
    The validity and reliability of a customized rigid supportive harness during Smith machine back squat exercise. J Strength Cond Res 28(3): 636-642, 2014- Although the back squat exercise is commonly prescribed to both athletic and clinical populations, individuals with restricted glenohumeral mobility may be unable to safely support the bar on the upper trapezius using their hands. The aims of this study were to investigate the validity and reliability of a back squat variation using a rigid supportive harness that does not require unrestricted glenohumeral mobility for quantifying 1 repetition maximum (1RM). Thirteen young men (age = 25.3 ± 4.5 years, height = 179.2 ± 6.9 cm, and body mass = 86.6 ± 12.0 kg) with at least 2 years resistance training experience volunteered to participate in the study. Subjects reported to the lab on 3 occasions, each separated by 1 week. During testing sessions, subjects were assessed for 1RM using the traditional back squat (session 1) and harness back squat (HBS; sessions 2 and 3) exercises. Mean 1RM for the traditional back squat, and 2 testing sessions of the HBS (HBS1 and HBS2) were 148.4 ± 25.0 kg, 152.5 ± 25.7 kg, and 150.4 ± 22.6 kg, respectively. Back squat and mean HBS 1RM scores were very strongly correlated (r = 0.96; p ≥ 0.001). There were no significant differences in 1RM scores between the 3 trials. The test-retest 1RM scores with the HBS demonstrated high reliability, with an intraclass correlation coefficient of 0.98 (95% confidence interval [CI] = 0.93-0.99), and a coefficient of variation of 2.6% (95% CI = 1.9-4.3). Taken together, these data suggest that the HBS exercise is a valid and reliable method for assessing 1RM in young men with previous resistance training experience and may be useful for individuals with restricted glenohumeral mobility. © 2014 National Strength and Conditioning Association. Scott, BR, Dascombe, BJ, Delaney, JA, Elsworthy, N, Lockie, RG, Sculley, DV, and Slattery, KM
    corecore