12 research outputs found

    Application of organolithium compounds for the preparation of some aliphatic and alicyclic phosphines, phosphine oxides and phosphine sulfides

    No full text
    Due to the character of the original source materials and the nature of batch digitization, quality control issues may be present in this document. Please report any quality issues you encounter to [email protected], referencing the URI of the item.Not availabl

    Aryllithiums with Increasing Steric Crowding and Lipophilicity Prepared from Chlorides in Diethyl Ether. The First Directly Prepared Room-Temperature-Stable Dilithioarenes

    No full text
    A convenient procedure has been developed for the preparation of synthetically useful, room-temperature-stable aryllithiums starting from aryl chlorides and lithium metal. The method provides a route to aryllithiums which have previously not been accessible cleanly or could only be prepared by using more expensive starting materials

    New hydroxystilbenoid derivatives endowed with neuroprotective activity and devoid of interference with estrogen and aryl hydrocarbon receptor-mediated transcription

    No full text
    We have synthesized a series of new (E) stilbenoid derivatives containing hydroxy groups at ring positions identical or similar to those of trans-resveratrol and bearing one or two bulky electron donating groups ortho to 4′-OH and we have evaluated their neuroprotective activity using glutamate-challenged HT22 hippocampal neurons to model oxidative stress-induced neuronal cell death. The most active derivatives, 5-{(E)-2-[3,5-bis(1-ethylpropyl)-4-hydroxyphenyl]ethenyl}-1,3-benzenediol (2), 5-[(E)-2-(3,5-di-tert-butyl-4-hydroxyphenylethenyl)]-1,3-benzenediol (4) and 5-{(1E,3E)-4-[3,5-bis(1-ethylpropyl)-4-hydroxyphenyl]-1,3-butadienyl}-1,3-benzenediol (6), had EC50 values of 30, 45 and 12 nM, respectively, and were ca. 100 to 400-fold more potent than resveratrol. Derivatives 2, 4 and 6 lacked cytotoxic activity against HT22 cells and estrogen receptor agonist or antagonist activity in estrogen response element-dependent gene expression and in estrogen-dependent proliferation of MCF-7 human breast cancer cells. In addition, they were incapable of interfering with aryl hydrocarbon receptor-mediated xenobiotic response element-dependent gene expression. Derivatives 2, 4 and 6 might assist in the development of lead candidates against oxidative stress-driven neurodegenerative diseases that will not increase endocrine cancer risk nor affect drug activation and detoxification mechanisms
    corecore