9 research outputs found

    Chemokines and their receptors in ovarian cancer

    Get PDF
    Available from British Library Document Supply Centre-DSC:DXN053372 / BLDSC - British Library Document Supply CentreSIGLEGBUnited Kingdo

    SDF1 controls pituitary cell proliferation through the activation of ERK1/2 and the Ca2+-dependent cytosolic tyrosine kinase, Pyk2.

    No full text
    Stromal cell-derived factor-1 (SDF-1) is a chemokine of the CXC subfamily that exerts its effects via CXCR4, a G-protein-coupled receptor. CXCR4 is often expressed. by tumor cells, and its activation causes tumor cell proliferation. Using GH4C1 cells, here we show that SDF-1 induced cell proliferation in a dose-dependent manner. Thus, we evaluated the intracellular signaling involved in this effect. SDF-1 increased cytosolic [Ca2+] and activated Pyk2, ERK1/2, and BKCa, channels. To correlate these intracellular effectors with the proliferative activity of SDF-1, we inhibited their activity using BAPTA-AM (Ca2+ chelator), PD98059 (MEK inhibitor), salicylate (Pyk2 inhibitor), and TEA (K+ channel blocker). All these compounds reverted SDF-1-induced proliferation, suggesting the involvement of multiple intracellular pathways. To identify a possible crosstalk and a molecular ordering among these pathways, we tested these antagonists on SDF-1-dependent activation of ERK1/2, Pyk2, and BKCa channels. We report that the inhibition of [Ca2+](i) increase or the blockade of BKCa channel activity did not affect ERK1/2 activation by SDF-1; Pyk2 activation was purely Ca2+ dependent, not involving ERK1/2 or BKCa channels; and BKCa channel activity was antagonized by Pyk2 but not by ERK1/2 inhibitors. These data suggest that SDF-1-dependent increase of [Ca2+](i) activates Pyk2, which, in turn, regulates BKCa channel activity. Conversely, ERK1/2 activation is an independent phenomenon. In conclusion, we demonstrate that SDF-1 induces proliferation of GH4C1 cells, suggesting that the activation of CXCR4 may represent a novel regulatory mechanism for pituitary cell proliferation which may contribute to pituitary adenoma development

    The Third Fermi Large Area Telescope Catalog of Gamma-ray Pulsars

    No full text
    International audienceWe present 294 pulsars found in GeV data from the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope. Another 33 millisecond pulsars (MSPs) discovered in deep radio searches of LAT sources will likely reveal pulsations once phase-connected rotation ephemerides are achieved. A further dozen optical and/or X-ray binary systems co-located with LAT sources also likely harbor gamma-ray MSPs. This catalog thus reports roughly 340 gamma-ray pulsars and candidates, 10% of all known pulsars, compared to ≀11\leq 11 known before Fermi. Half of the gamma-ray pulsars are young. Of these, the half that are undetected in radio have a broader Galactic latitude distribution than the young radio-loud pulsars. The others are MSPs, with 6 undetected in radio. Overall, >235 are bright enough above 50 MeV to fit the pulse profile, the energy spectrum, or both. For the common two-peaked profiles, the gamma-ray peak closest to the magnetic pole crossing generally has a softer spectrum. The spectral energy distributions tend to narrow as the spindown power E˙\dot E decreases to its observed minimum near 103310^{33} erg s−1^{-1}, approaching the shape for synchrotron radiation from monoenergetic electrons. We calculate gamma-ray luminosities when distances are available. Our all-sky gamma-ray sensitivity map is useful for population syntheses. The electronic catalog version provides gamma-ray pulsar ephemerides, properties and fit results to guide and be compared with modeling results

    The Third Fermi Large Area Telescope Catalog of Gamma-ray Pulsars

    No full text
    International audienceWe present 294 pulsars found in GeV data from the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope. Another 33 millisecond pulsars (MSPs) discovered in deep radio searches of LAT sources will likely reveal pulsations once phase-connected rotation ephemerides are achieved. A further dozen optical and/or X-ray binary systems co-located with LAT sources also likely harbor gamma-ray MSPs. This catalog thus reports roughly 340 gamma-ray pulsars and candidates, 10% of all known pulsars, compared to ≀11\leq 11 known before Fermi. Half of the gamma-ray pulsars are young. Of these, the half that are undetected in radio have a broader Galactic latitude distribution than the young radio-loud pulsars. The others are MSPs, with 6 undetected in radio. Overall, >235 are bright enough above 50 MeV to fit the pulse profile, the energy spectrum, or both. For the common two-peaked profiles, the gamma-ray peak closest to the magnetic pole crossing generally has a softer spectrum. The spectral energy distributions tend to narrow as the spindown power E˙\dot E decreases to its observed minimum near 103310^{33} erg s−1^{-1}, approaching the shape for synchrotron radiation from monoenergetic electrons. We calculate gamma-ray luminosities when distances are available. Our all-sky gamma-ray sensitivity map is useful for population syntheses. The electronic catalog version provides gamma-ray pulsar ephemerides, properties and fit results to guide and be compared with modeling results

    The Third Fermi Large Area Telescope Catalog of Gamma-ray Pulsars

    No full text
    International audienceWe present 294 pulsars found in GeV data from the Large Area Telescope (LAT) on the Fermi Gamma-ray Space Telescope. Another 33 millisecond pulsars (MSPs) discovered in deep radio searches of LAT sources will likely reveal pulsations once phase-connected rotation ephemerides are achieved. A further dozen optical and/or X-ray binary systems co-located with LAT sources also likely harbor gamma-ray MSPs. This catalog thus reports roughly 340 gamma-ray pulsars and candidates, 10% of all known pulsars, compared to ≀11\leq 11 known before Fermi. Half of the gamma-ray pulsars are young. Of these, the half that are undetected in radio have a broader Galactic latitude distribution than the young radio-loud pulsars. The others are MSPs, with 6 undetected in radio. Overall, >235 are bright enough above 50 MeV to fit the pulse profile, the energy spectrum, or both. For the common two-peaked profiles, the gamma-ray peak closest to the magnetic pole crossing generally has a softer spectrum. The spectral energy distributions tend to narrow as the spindown power E˙\dot E decreases to its observed minimum near 103310^{33} erg s−1^{-1}, approaching the shape for synchrotron radiation from monoenergetic electrons. We calculate gamma-ray luminosities when distances are available. Our all-sky gamma-ray sensitivity map is useful for population syntheses. The electronic catalog version provides gamma-ray pulsar ephemerides, properties and fit results to guide and be compared with modeling results
    corecore