28 research outputs found

    Capillary Waves at Liquid/Vapor Interfaces: A Molecular Dynamics Simulation

    Full text link
    Evidence for capillary waves at a liquid/vapor interface are presented from extensive molecular dynamics simulations of a system containing up to 1.24 million Lennard-Jones particles. Careful measurements show that the total interfacial width depends logarithmically on L∥L_\parallel, the length of the simulation cell parallel to the interface, as predicted theoretically. The strength of the divergence of the interfacial width on L∥L_\parallel depends inversely on the surface tension γ\gamma. This allows us to measure γ\gamma two ways since γ\gamma can also be obtained from the difference in the pressure parallel and perpendicular to the interface. These two independent measures of γ\gamma agree provided that the interfacial order parameter profile is fit to an error function and not a hyperbolic tangent, as often assumed. We explore why these two common fitting functions give different results for γ\gamma

    Introducing Variable Cell Shape Methods in Field Theory Simulations of Polymers

    Full text link
    We propose a new method for carrying out field-theoretic simulations of polymer systems under conditions of prescribed external stress, allowing for shape changes in the simulation box. A compact expression for the deviatoric stress tensor is derived in terms of the chain propagator, and is used to monitor changes in the box shape according to a simple relaxation scheme. The method allows fully relaxed, stress free configurations to be obtained even in non trivial morphologies, and enables the study of morphology transitions induced by external stresses

    Metastable lifetimes in a kinetic Ising model: Dependence on field and system size

    Full text link
    The lifetimes of metastable states in kinetic Ising ferromagnets are studied by droplet theory and Monte Carlo simulation, in order to determine their dependences on applied field and system size. For a wide range of fields, the dominant field dependence is universal for local dynamics and has the form of an exponential in the inverse field, modified by universal and nonuniversal power-law prefactors. Quantitative droplet-theory predictions are numerically verified, and small deviations are shown to depend nonuniversally on the details of the dynamics. We identify four distinct field intervals in which the field dependence and statistical properties of the lifetimes are different. The field marking the crossover between the weak-field regime, in which the decay is dominated by a single droplet, and the intermediate-field regime, in which it is dominated by a finite droplet density, vanishes logarithmically with system size. As a consequence the slow decay characteristic of the former regime may be observable in systems that are macroscopic as far as their equilibrium properties are concerned.Comment: 18 pages single spaced. RevTex Version 3. FSU-SCRI-94-1

    Theory of Polydisperse Inhomogeneous Polymers

    No full text

    Phase Behavior of Tapered Diblock Copolymers from Self-Consistent Field Theory

    No full text
    Tapered diblock copolymers are similar to AB diblock copolymers, but the sharp junction between the A and B blocks is replaced with a gradient region in which composition varies from mostly A to mostly B along its length. The A side of the taper can be attached to the A block (normal) or the B block (inverse). We demonstrate how taper length and direction affect the phase diagrams and density profiles using self-consistent field theory. Adding tapers shifts the order–disorder transition to lower temperature versus the diblock, and this effect is larger for longer tapers and for inverse tapers. However, tapered systems’ phase diagrams and interfacial profiles do not simply match those of diblocks at a shifted effective temperature. For instance, we find that normal tapering widens the bicontinuous gyroid region of the phase diagram, while inverse tapering narrows this region, apparently due to differences in polymer organization at the interfaces
    corecore