101,189 research outputs found
Between Atomism and Superatomism
There are at least three vaguely atomistic principles that have come up in the literature, two explicitly and one implicitly. First, standard atomism is the claim that everything is composed of atoms, and is very often how atomism is characterized in the literature. Second, superatomism is the claim that parthood is well-founded, which implies that every proper parthood chain terminates, and has been discussed as a stronger alternative to standard atomism. Third, there is a principle that lies between these two theses in terms of its relative strength: strong atomism, the claim that every maximal proper parthood chain terminates. Although strong atomism is equivalent to superatomism in classical extensional mereology, it is strictly weaker than it in strictly weaker systems in which parthood is a partial order. And it is strictly stronger than standard atomism in classical extensional mereology and, given the axiom of choice, in such strictly weaker systems as well. Though strong atomism has not, to my knowledge, been explicitly identified, Shiver appears to have it in mind, though it is unclear whether he recognizes that it is not equivalent to standard atomism in each of the mereologies he considers. I prove these logical relationships which hold amongst these three atomistic principles, and argue that, whether one adopts classical extensional mereology or a system strictly weaker than it in which parthood is a partial order, standard atomism is a more defensible addition to one’s mereology than either of the other two principles, and it should be regarded as the best formulation of the atomistic thesis
Plural Slot Theory
Kit Fine (2000) breaks with tradition, arguing that, pace Russell (e.g., 1903: 228), relations have neither directions nor converses. He considers two ways to conceive of these new "neutral" relations, positionalism and anti-positionalism, and argues that the latter should be preferred to the former. Cody Gilmore (2013) argues for a generalization of positionalism, slot theory, the view that a property or relation is n-adic if and only if there are exactly n slots in it, and (very roughly) that each slot may be occupied by at most one entity. Slot theory (and with it, positionalism) bears the full brunt of Fine's (2000) symmetric completions and conflicting adicities problems. I fully develop an alternative, plural slot theory (or pocket theory), which avoids these problems, key elements of which are first considered by Yi (1999: 168 ff.). Like the slot theorist, the pocket theorist posits entities (pockets) in properties and relations that can be occupied. But unlike the slot theorist, the pocket theorist denies that at most one entity can occupy any one of them. As a result, she must also deny that the adicity of a property or relation is equal to the number of occupiable entities in it. By abandoning these theses, however, the pocket theorist is able to avoid Fine's problems, resulting in a stronger theory about the internal structure of properties and relations. Pocket theory also avoids a serious drawback of anti-positionalism
Polymer crystal-melt interfaces and nucleation in polyethylene
Kinetic barriers cause polymers to crystallize incompletely, into nanoscale
lamellae interleaved with amorphous regions. As a result, crystalline polymers
are full of crystal-melt interfaces, which dominate their physical properties.
The longstanding theoretical challenge to understand these interfaces has new
relevance, because of accumulating evidence that polymer crystals often
nucleate via a metastable, partially ordered "rotator" phase. To test this idea
requires a theory of the bulk and interfacial free energies of the critical
nucleus. We present a new approach to the crystal-melt interface, which
represents the amorphous region as a grafted brush of loops in a
self-consistent pressure field. We combine this theory with estimates of bulk
free energy differences, to calculate nucleation barriers and rates via rotator
versus crystal nuclei for polyethylene. We find rotator-phase nucleation is
indeed favored throughout the temperature range where nucleation is observed.
Our methods can be extended to other polymers
Infinite Descent
Once one accepts that certain things metaphysically depend upon, or are metaphysically explained by, other things, it is natural to begin to wonder whether these chains of dependence or explanation must come to an end. This essay surveys the work that has been done on this issue—the issue of grounding and infinite descent. I frame the discussion around two questions: (1) What is infinite descent of ground? and (2) Is infinite descent of ground possible? In addressing the second question, I will consider a number of arguments that have been made for and against the possibility of infinite descent of ground. When relevant, I connect the discussion to two important views about the way reality can be structured by grounding: metaphysical foundationalism and metaphysical infinitism
Higgs and Z-boson Signatures of Supersymmetry
In supersymmetric theories of nature the Higgsino fermionic superpartner of
the Higgs boson can arise as the lightest standard model superpartner depending
on the couplings between the Higgs and supersymmetry breaking sectors. In this
letter the production and decay of Higgsino pairs to the Goldstone fermion of
supersymmetry breaking and the Higgs boson, h, or gauge bosons, Z or
are considered. Relatively clean di-boson final states, hh, , hZ, , or ZZ, with a large amount of missing energy result. The latter
channels provide novel discovery modes for supersymmetry at high energy
colliders since events with Z bosons are generally rejected in supersymmetry
searches. In addition, final states with real Higgs bosons can potentially
provide efficient channels to discover and study a Higgs signal at the Fermilab
Tevatron Run II.Comment: 11 pages, LaTeX, 3 figure
Transfer orbit stage mechanisms thermal vacuum test
A systems level mechanisms test was conducted on the Orbital Sciences Corp.'s Transfer Orbit Stage (TOS). The TOS is a unique partially reusable transfer vehicle which will boost a satellite into its operational orbit from the Space Shuttle's cargo bay. The mechanical cradle and tilt assemblies will return to earth with the Space Shuttle while the Solid Rocket Motor (SRM) and avionics package are expended. A mechanisms test was performed on the forward cradle and aft tilting assemblies of the TOS under thermal vacuum conditions. Actuating these assemblies under a 1 g environment and thermal vacuum conditions proved to be a complex task. Pneumatic test fixturing was used to lift the forward cradle, and tilt the SRM, and avionics package. Clinometers, linear voltage displacement transducers, and load cells were used in the thermal vacuum chamber to measure the performance and characteristics of the TOS mechanism assembly. Incorporation of the instrumentation and pneumatic system into the test setup was not routine since pneumatic actuation of flight hardware had not been previously performed in the facility. The methods used are presented along with the problems experienced during the design, setup and test phases
Cost effective alternative to low irradiance measurements
Martin Marietta's Space Simulation Laboratory (SSL) has a Thermal Environment Simulator (TES) with 56 individually controlled heater zones. The TES has a temperature range of approximately minus 129 C to plus 149 C. Because of the ability of TES to provide complex irradiance distributions, it is necessary to be able to measure a wide range of irradiance levels. SSL currently uses ambient temperature controlled radiometers with the capacity to measure sink irradiance levels of approximately 42.6 mw/sq cm, sink temperature equals 21 C and up. These radiometers could not be used to accurately measure the lower irradiance levels of the TES. Therefore, it was necessary to obtain a radiometer or develop techniques which could be used to measure lower irradiance levels
- …