2 research outputs found

    Why Are Polar Surfaces of ZnO Stable?

    Get PDF
    We probe and rationalize the complex surface chemistry of wurtzite ZnO by employing interatomic potential calculations coupled with a Monte Carlo procedure that sampled over 0.5 million local minima. We analyze the structure and stability of the (0001) and (0001̅) ZnO surfaces, rationalizing previous patterns found in STM images and explaining the (1 × 1) periodicity reported by LEED analysis. The full range of Zn/O surface occupancies was covered for a (5 × 5) supercell, keeping |<i>m</i><sub>Zn</sub> – <i>m</i><sub>O</sub>|/<i>N</i> ≈ 0.24 where <i>m</i> and <i>N</i> are the numbers of occupied surface sites and total surface sites, respectively. Our calculations explain why the (5 × 5) reconstructions seen in some experiments and highlight the importance of completely canceling the inherent dipole of the unreconstructed polar surfaces. The experimentally observed rich reconstruction patterns can be traced from the lowest occupancy, showing the thermodynamically most stable configurations of both polar surfaces. Triangular and striped reconstructions are seen, <i>inter alia</i>, on both polar surfaces, and hexagonal patterns also appear on the O terminated surface. Our results explain the main experimental structures observed on these complex surfaces. Moreover, grand canonical simulations of ZnO polar surfaces reveal that disorder is favored and, thus, configurational entropic factors is the the cause of their stability

    Describing Excited State Relaxation and Localization in TiO<sub>2</sub> Nanoparticles Using TD-DFT

    No full text
    We have investigated the description of excited state relaxation in naked and hydrated TiO<sub>2</sub> nanoparticles using Time-Dependent Density Functional Theory (TD-DFT) with three common hybrid exchange-correlation (XC) potentials: B3LYP, CAM-B3LYP and BHLYP. Use of TD-CAM-B3LYP and TD-BHLYP yields qualitatively similar results for all structures, which are also consistent with predictions of coupled-cluster theory for small particles. TD-B3LYP, in contrast, is found to make rather different predictions; including apparent conical intersections for certain particles that are not observed with TD-CAM-B3LYP nor with TD-BHLYP. In line with our previous observations for vertical excitations, the issue with TD-B3LYP appears to be the inherent tendency of TD-B3LYP, and other XC potentials with no or a low percentage of Hartree–Fock like exchange, to spuriously stabilize the energy of charge-transfer (CT) states. Even in the case of hydrated particles, for which vertical excitations are generally well described with all XC potentials, the use of TD-B3LYP appears to result in CT problems during excited state relaxation for certain particles. We hypothesize that the spurious stabilization of CT states by TD-B3LYP even may drive the excited state optimizations to different excited state geometries from those obtained using TD-CAM-B3LYP or TD-BHLYP. Finally, focusing on the TD-CAM-B3LYP and TD-BHLYP results, excited state relaxation in small naked and hydrated TiO<sub>2</sub> nanoparticles is predicted to be associated with a large Stokes’ shift
    corecore