75,188 research outputs found

    Fluorescence visualization of a convective instability which modulates the spreading of volatile surface films

    Get PDF
    The spontaneous spreading of a thin liquid film along the surface of a deep liquid layer of higher surface tension is a ubiquitous process which provides rapid and efficient surface transport of organic or biological material. For a source of constant concentration, the leading edge of a nonvolatile, immiscible film driven to spread by gradients in surface tension is known to advance as t^3/4 in time. Recent experiments using laser shadowgraphy to detect the advancing front of spreading films indicate, however, that immiscible but volatile sources of constant concentration spread with a reduced exponent according to t^1/2. Using a novel technique whereby fluorescent lines are inscribed in water, we have detected the evolution of a thermal instability beneath the leading edge of volatile films which strongly resembles a Rayleigh-Bénard roll. We propose that the increased dissipation from this rotational flow structure is likely responsible for the reduction in spreading exponent. This observation suggests a conceptual framework for coupling the effects of evaporation to the dynamics of spreading

    Novel modeling of task versus rest brain state predictability using a dynamic time warping spectrum: comparisons and contrasts with other standard measures of brain dynamics

    Get PDF
    Dynamic time warping, or DTW, is a powerful and domain-general sequence alignment method for computing a similarity measure. Such dynamic programming-based techniques like DTW are now the backbone and driver of most bioinformatics methods and discoveries. In neuroscience it has had far less use, though this has begun to change. We wanted to explore new ways of applying DTW, not simply as a measure with which to cluster or compare similarity between features but in a conceptually different way. We have used DTW to provide a more interpretable spectral description of the data, compared to standard approaches such as the Fourier and related transforms. The DTW approach and standard discrete Fourier transform (DFT) are assessed against benchmark measures of neural dynamics. These include EEG microstates, EEG avalanches, and the sum squared error (SSE) from a multilayer perceptron (MLP) prediction of the EEG time series, and simultaneously acquired FMRI BOLD signal. We explored the relationships between these variables of interest in an EEG-FMRI dataset acquired during a standard cognitive task, which allowed us to explore how DTW differentially performs in different task settings. We found that despite strong correlations between DTW and DFT-spectra, DTW was a better predictor for almost every measure of brain dynamics. Using these DTW measures, we show that predictability is almost always higher in task than in rest states, which is consistent to other theoretical and empirical findings, providing additional evidence for the utility of the DTW approach

    Design study of general aviation collision avoidance system

    Get PDF
    The selection and design of a time/frequency collision avoidance system for use in general aviation aircraft is discussed. The modifications to airline transport collision avoidance equipment which were made to produce the simpler general aviation system are described. The threat determination capabilities and operating principles of the general aviation system are illustrated

    Soil erosion by landing rockets Final report

    Get PDF
    Cratering effect of descending rocket exhaust expected from soft earth landin

    Ignition and combustion characteristics of metallized propellants

    Get PDF
    Research designed to develop detailed knowledge of the secondary atomization and ignition characteristics of aluminum slurry propellants was started. These processes are studied because they are the controlling factors limiting the combustion efficiency of aluminum slurry propellants in rocket applications. A burner and spray rig system allowing the study of individual slurry droplets having diameters from about 10 to 100 microns was designed and fabricated. The burner generates a near uniform high temperature environment from the merging of 72 small laminar diffusion flames above a honeycomb matrix. This design permits essentially adiabatic operation over a wide range of stoichiometries without danger of flashback. A single particle sizing system and velocimeter also were designed and assembled. Light scattered from a focused laser beam is related to the particle (droplet) size, while the particle velocity is determined by its transit time through the focal volume. Light from the combustion of aluminum is also sensed to determine if ignition was achieved. These size and velocity measurements will allow the determination of disruption and ignition times as functions of drop sizes and ambient conditions

    Disposal of Household Wastewater in Soils of High Stone Content (1981-1983)

    Get PDF
    Four experimental filter fields were constructed with built-in monitoring equipment in Nixa soils. These soils contain many chert fragments and a fragipan about 60 cm below the soil surface. The fragipan restricts downward movement of water and is the designlimitingfeature. The four filter fields were: 1. A standard filter field, 76 cm deep. The bottom of the trench was in the fragipan. 2. A modified standard filter field, 30 cm deep. The bottom of the trench was above the fragipan. 3. A modified pressure filter field, 40 cm deep. The bottom of the trench was above the fragipan. In addition, a pressure-distribution system was used to insure uniform distribution of effluent in the trench. Inadvertently, this field was installed in a different soil, and the results cannot be compared directly with the other three. 4. Another modified pressure filter field with the bottom of the trench only 6 cm below the soil surface. Observation of these systems confirms that placing filter fields higher in the soil above the hydraulically limiting horizon results in improved hydraulic performance. The presence of the fragipan amplified the adverse effects attributable to climatic stress. The seepage beds which are higher in the soil profile are able to handle the effluent load and climate load with less danger of surfacing

    Quantifying Finite Temperature Effects in Atom Chip Interferometry of Bose-Einstein Condensates

    Full text link
    We quantify the effect of phase fluctuations on atom chip interferometry of Bose-Einstein condensates. At very low temperatures, we observe small phase fluctuations, created by mean-field depletion, and a resonant production of vortices when the two clouds are initially in anti-phase. At higher temperatures, we show that the thermal occupation of Bogoliubov modes makes vortex production vary smoothly with the initial relative phase difference between the two atom clouds. We also propose a technique to observe vortex formation directly by creating a weak link between the two clouds. The position and direction of circulation of the vortices is subsequently revealed by kinks in the interference fringes produced when the two clouds expand into one another. This procedure may be exploited for precise force measurement or motion detection.Comment: 7 pages, 5 figure

    Alternative Size and Lifetime Measurements for High-Energy Heavy-Ion Collisions

    Full text link
    Two-Particle correlations based on the interference of identical particles has provided the chief means for determining the shape and lifetime of sources in relativistic heavy ion collisions. Here, Strong and Coulomb induced correlations are shown to provide equivalent information.Comment: Two confusing typographical errors were correcte

    Joining up health and bioinformatics: e-science meets e-health

    Get PDF
    CLEF (Co-operative Clinical e-Science Framework) is an MRC sponsored project in the e-Science programme that aims to establish methodologies and a technical infrastructure forthe next generation of integrated clinical and bioscience research. It is developing methodsfor managing and using pseudonymised repositories of the long-term patient histories whichcan be linked to genetic, genomic information or used to support patient care. CLEF concentrateson removing key barriers to managing such repositories ? ethical issues, informationcapture, integration of disparate sources into coherent ?chronicles? of events, userorientedmechanisms for querying and displaying the information, and compiling the requiredknowledge resources. This paper describes the overall information flow and technicalapproach designed to meet these aims within a Grid framework
    corecore