41 research outputs found

    Automated Analysis of Risk Factors for Postictal Generalized EEG Suppression

    Get PDF
    Rationale: Currently, there is some ambiguity over the role of postictal generalized electro-encephalographic suppression (PGES) as a biomarker in sudden unexpected death in epilepsy (SUDEP). Visual analysis of PGES, known to be subjective, may account for this. In this study, we set out to perform an analysis of PGES presence and duration using a validated signal processing tool, specifically to examine the association between PGES and seizure features previously reported to be associated with visually analyzed PGES. Methods: This is a prospective, multicenter epilepsy monitoring study of autonomic and breathing biomarkers of SUDEP in adult patients with intractable epilepsy. We studied videoelectroencephalogram (vEEG) recordings of generalized convulsive seizures (GCS) in a cohort of patients in whom respiratory and vEEG recording were carried out during the evaluation in the epilepsy monitoring unit. A validated automated EEG suppression detection tool was used to determine presence and duration of PGES. Results: We studied 148 GCS in 87 patients. PGES occurred in 106/148 (71.6%) seizures in 70/87 (80.5%) of patients. PGES mean duration was 38.7 ± 23.7 (37; 1–169) seconds. Presence of tonic phase during GCS, including decerebration, decortication and hemi-decerebration, were 8.29 (CI 2.6–26.39, p = 0.0003), 7.17 (CI 1.29–39.76, p = 0.02), and 4.77 (CI 1.25–18.20, p = 0.02) times more likely to have PGES, respectively. In addition, presence of decerebration (p = 0.004) and decortication (p = 0.02), older age (p = 0.009), and hypoxemia duration (p = 0.03) were associated with longer PGES durations. Conclusions: In this study, we confirmed observations made with visual analysis, that presence of tonic phase during GCS, longer hypoxemia, and older age are reliably associated with PGES. We found that of the different types of tonic phase posturing, decerebration has the strongest association with PGES, followed by decortication, followed by hemi-decerebration. This suggests that these factors are likely indicative of seizure severity and may or may not be associated with SUDEP. An automated signal processing tool enables objective metrics, and may resolve apparent ambiguities in the role of PGES in SUDEP and seizure severity studies

    Seizure Clusters, Seizure Severity Markers, and SUDEP Risk.

    Get PDF
    Rationale: Seizure clusters may be related to Sudden Unexpected Death in Epilepsy (SUDEP). Two or more generalized convulsive seizures (GCS) were captured during video electroencephalography in 7/11 (64%) patients with monitored SUDEP in the MORTEMUS study. It follows that seizure clusters may be associated with epilepsy severity and possibly with SUDEP risk. We aimed to determine if electroclinical seizure features worsen from seizure to seizure within a cluster and possible associations between GCS clusters, markers of seizure severity, and SUDEP risk. Methods: Patients were consecutive, prospectively consented participants with drug-resistant epilepsy from a multi-center study. Seizure clusters were defined as two or more GCS in a 24-h period during the recording of prolonged video-electroencephalography in the Epilepsy monitoring unit (EMU). We measured heart rate variability (HRV), pulse oximetry, plethysmography, postictal generalized electroencephalographic suppression (PGES), and electroencephalography (EEG) recovery duration. A linear mixed effects model was used to study the difference between the first and subsequent seizures, with a level of significance set at p < 0.05. Results: We identified 112 GCS clusters in 105 patients with 285 seizures. GCS lasted on average 48.7 ± 19 s (mean 49, range 2-137). PGES emerged in 184 (64.6%) seizures and postconvulsive central apnea (PCCA) was present in 38 (13.3%) seizures. Changes in seizure features from seizure to seizure such as seizure and convulsive phase durations appeared random. In grouped analysis, some seizure features underwent significant deterioration, whereas others improved. Clonic phase and postconvulsive central apnea (PCCA) were significantly shorter in the fourth seizure compared to the first. By contrast, duration of decerebrate posturing and ictal central apnea were longer. Four SUDEP cases in the cluster cohort were reported on follow-up. Conclusion: Seizure clusters show variable changes from seizure to seizure. Although clusters may reflect epilepsy severity, they alone may be unrelated to SUDEP risk. We suggest a stochastic nature to SUDEP occurrence, where seizure clusters may be more likely to contribute to SUDEP if an underlying progressive tendency toward SUDEP has matured toward a critical SUDEP threshold

    Association of Peri-ictal Brainstem Posturing With Seizure Severity and Breathing Compromise in Patients With Generalized Convulsive Seizures

    Get PDF
    OBJECTIVE: To analyze the association between peri-ictal brainstem posturing semiologies with postictal generalized electroencephalographic suppression (PGES) and breathing dysfunction in generalized convulsive seizures (GCS). METHODS: In this prospective, multicenter analysis of GCS, ictal brainstem semiology was classified as (1) decerebration (bilateral symmetric tonic arm extension), (2) decortication (bilateral symmetric tonic arm flexion only), (3) hemi-decerebration (unilateral tonic arm extension with contralateral flexion) and (4) absence of ictal tonic phase. Postictal posturing was also assessed. Respiration was monitored with thoracoabdominal belts, video, and pulse oximetry. RESULTS: Two hundred ninety-five seizures (180 patients) were analyzed. Ictal decerebration was observed in 122 of 295 (41.4%), decortication in 47 of 295 (15.9%), and hemi-decerebration in 28 of 295 (9.5%) seizures. Tonic phase was absent in 98 of 295 (33.2%) seizures. Postictal posturing occurred in 18 of 295 (6.1%) seizures. PGES risk increased with ictal decerebration (odds ratio [OR] 14.79, 95% confidence interval [CI] 6.18-35.39, p < 0.001), decortication (OR 11.26, 95% CI 2.96-42.93, p < 0.001), or hemi-decerebration (OR 48.56, 95% CI 6.07-388.78, p < 0.001). Ictal decerebration was associated with longer PGES (p = 0.011). Postictal posturing was associated with postconvulsive central apnea (PCCA) (p = 0.004), longer hypoxemia (p < 0.001), and Spo2 recovery (p = 0.035). CONCLUSIONS: Ictal brainstem semiology is associated with increased PGES risk. Ictal decerebration is associated with longer PGES. Postictal posturing is associated with a 6-fold increased risk of PCCA, longer hypoxemia, and Spo2 recovery. Peri-ictal brainstem posturing may be a surrogate biomarker for GCS severity identifiable without in-hospital monitoring. CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that peri-ictal brainstem posturing is associated with the GCS with more prolonged PGES and more severe breathing dysfunction
    corecore