12,981 research outputs found
SATMC: Spectral Energy Distribution Analysis Through Markov Chains
We present the general purpose spectral energy distribution (SED) fitting
tool SED Analysis Through Markov Chains (SATMC). Utilizing Monte Carlo Markov
Chain (MCMC) algorithms, SATMC fits an observed SED to SED templates or models
of the user's choice to infer intrinsic parameters, generate confidence levels
and produce the posterior parameter distribution. Here we describe the key
features of SATMC from the underlying MCMC engine to specific features for
handling SED fitting. We detail several test cases of SATMC, comparing results
obtained to traditional least-squares methods, which highlight its accuracy,
robustness and wide range of possible applications. We also present a sample of
submillimetre galaxies that have been fitted using the SED synthesis routine
GRASIL as input. In general, these SMGs are shown to occupy a large volume of
parameter space, particularly in regards to their star formation rates which
range from ~30-3000 M_sun yr^-1 and stellar masses which range from
~10^10-10^12 M_sun. Taking advantage of the Bayesian formalism inherent to
SATMC, we also show how the fitting results may change under different
parametrizations (i.e., different initial mass functions) and through
additional or improved photometry, the latter being crucial to the study of
high-redshift galaxies.Comment: 17 pages, 11 figures, MNRAS accepte
Calculating the transfer function of noise removal by principal component analysis and application to AzTEC observations
Instruments using arrays of many bolometers have become increasingly common
in the past decade. The maps produced by such instruments typically include the
filtering effects of the instrument as well as those from subsequent steps
performed in the reduction of the data. Therefore interpretation of the maps is
dependent upon accurately calculating the transfer function of the chosen
reduction technique on the signal of interest. Many of these instruments use
non-linear and iterative techniques to reduce their data because such methods
can offer improved signal-to-noise over those that are purely linear,
particularly for signals at scales comparable to that subtended by the array.
We discuss a general approach for measuring the transfer function of principal
component analysis (PCA) on point sources that are small compared to the
spatial extent seen by any single bolometer within the array. The results are
applied to previously released AzTEC catalogues of the COSMOS, Lockman Hole,
Subaru XMM-Newton Deep Field, GOODS-North and GOODS-South fields. Source flux
density and noise estimates increase by roughly +10 per cent for fields
observed while AzTEC was installed at the Atacama Submillimeter Telescope
Experiment and +15-25 per cent while AzTEC was installed at the James Clerk
Maxwell Telescope. Detection significance is, on average, unaffected by the
revised technique. The revised photometry technique will be used in subsequent
AzTEC releases.Comment: 14 pages, 4 figure
Heart enhancers with deeply conserved regulatory activity are established early in zebrafish development.
During the phylotypic period, embryos from different genera show similar gene expression patterns, implying common regulatory mechanisms. Here we set out to identify enhancers involved in the initial events of cardiogenesis, which occurs during the phylotypic period. We isolate early cardiac progenitor cells from zebrafish embryos and characterize 3838 open chromatin regions specific to this cell population. Of these regions, 162 overlap with conserved non-coding elements (CNEs) that also map to open chromatin regions in human. Most of the zebrafish conserved open chromatin elements tested drive gene expression in the developing heart. Despite modest sequence identity, human orthologous open chromatin regions recapitulate the spatial temporal expression patterns of the zebrafish sequence, potentially providing a basis for phylotypic gene expression patterns. Genome-wide, we discover 5598 zebrafish-human conserved open chromatin regions, suggesting that a diverse repertoire of ancient enhancers is established prior to organogenesis and the phylotypic period
Design of a microwave radiometer for monitoring high voltage insulator contamination level
Microwave radiometry is a novel method for monitoring contamination levels on high voltage insulators. The microwave radiometer described measures energy emitted from the contamination layer and could provide a safe, reliable, contactless monitoring method that is effective under dry conditions. The design of the system has focused on optimizing accuracy, stability and sensitivity using a relatively low cost architecture. Experimental results demonstrate that the output from the radiometer is able to clearly distinguish between samples with different contamination levels under dry conditions. This contamination monitoring method could potentially provide advance warning of the future failure of wet insulators in climates where insulators can experience dry conditions for extended periods
THE CHANGES IN EFFORT DISTRIBUTION FROM NOVICE TO EXPERIENCED PERFORMERS IN THE TRIPLE JUMP
This study investigated the ratios of the three phases in triple jumping by novice (n=8) and experienced (n=5) athletes during indoor competition. Video data were analysed to
determine the phase distances for 58 competitive triple jump performances. Phase ratio percentages were calculated for each of the trials. There were significant differences in
the step phase percentage (
The central density of a neutron star is unaffected by a binary companion at linear order in
Recent numerical work by Wilson, Mathews, and Marronetti [J. R. Wilson, G. J.
Mathews and P. Marronetti, Phys. Rev. D 54, 1317 (1996)] on the coalescence of
massive binary neutron stars shows a striking instability as the stars come
close together: Each star's central density increases by an amount proportional
to 1/(orbital radius). This overwhelms any stabilizing effects of tidal
coupling [which are proportional to 1/(orbital radius)^6] and causes the stars
to collapse before they merge. Since the claimed increase of density scales
with the stars' mass, it should also show up in a perturbation limit where a
point particle of mass orbits a neutron star. We prove analytically that
this does not happen; the neutron star's central density is unaffected by the
companion's presence to linear order in . We show, further, that the
density increase observed by Wilson et. al. could arise as a consequence of not
faithfully maintaining boundary conditions.Comment: 3 pages, REVTeX, no figures, submitted to Phys Rev D as a Rapid
Communicatio
The fractal structure of the universe : a new field theory approach
While the universe becomes more and more homogeneous at large scales,
statistical analysis of galaxy catalogs have revealed a fractal structure at
small-scales (\lambda < 100 h^{-1} Mpc), with a fractal dimension D=1.5-2
(Sylos Labini et al 1996). We study the thermodynamics of a self-gravitating
system with the theory of critical phenomena and finite-size scaling and show
that gravity provides a dynamical mechanism to produce this fractal structure.
We develop a field theoretical approach to compute the galaxy distribution,
assuming them to be in quasi-isothermal equilibrium. Only a limited, (although
large), range of scales is involved, between a short-distance cut-off below
which other physics intervene, and a large-distance cut-off, where the thermo-
dynamic equilibrium is not satisfied. The galaxy ensemble can be considered at
critical conditions, with large density fluctuations developping at any scale.
From the theory of critical phenomena, we derive the two independent critical
exponents nu and eta and predict the fractal dimension D = 1/nu to be either
1.585 or 2, depending on whether the long-range behaviour is governed by the
Ising or the mean field fixed points, respectively. Both set of values are
compatible with present observations. In addition, we predict the scaling
behaviour of the gravitational potential to be r^{-(1 + eta)/2}. That is,
r^{-0.5} for mean field or r^{- 0.519} for the Ising fixed point. The theory
allows to compute the three and higher density correlators without any
assumption or Ansatz. We find that the N-points density scales as
r_1^{(N-1)(D-3)}, when r_1 >> r_i, 2 leq i leq N . There are no free parameters
in this theory.Comment: Latex, 20 pages, no figures, to be published in the Astrophysical
Journa
Characterization of the Crab Pulsar's Timing Noise
We present a power spectral analysis of the Crab pulsar's timing noise,
mainly using radio measurements from Jodrell Bank taken over the period
1982-1989. The power spectral analysis is complicated by nonuniform data
sampling and the presence of a steep red power spectrum that can distort power
spectra measurement by causing severe power ``leakage''. We develop a simple
windowing method for computing red noise power spectra of uniformly sampled
data sets and test it on Monte Carlo generated sample realizations of red
power-law noise. We generalize time-domain methods of generating power-law red
noise with even integer spectral indices to the case of noninteger spectral
indices. The Jodrell Bank pulse phase residuals are dense and smooth enough
that an interpolation onto a uniform time series is possible. A windowed power
spectrum is computed revealing a periodic or nearly periodic component with a
period of about 568 days and a 1/f^3 power-law noise component with a noise
strength of 1.24 +/- 0.067 10^{-16} cycles^2/sec^2 over the analysis frequency
range 0.003 - 0.1 cycles/day. This result deviates from past analyses which
characterized the pulse phase timing residuals as either 1/f^4 power-law noise
or a quasiperiodic process. The analysis was checked using the Deeter
polynomial method of power spectrum estimation that was developed for the case
of nonuniform sampling, but has lower spectral resolution. The timing noise is
consistent with a torque noise spectrum rising with analysis frequency as f
implying blue torque noise, a result not predicted by current models of pulsar
timing noise. If the periodic or nearly periodic component is due to a binary
companion, we find a companion mass > 3.2 Earth masses.Comment: 53 pages, 9 figures, submitted to MNRAS, abstract condense
Integrated stratigraphy of the Waitakian-Otaian Stage boundary stratotype, Early Miocene, New Zealand
The base of the type section of the Otaian Stage at Bluecliffs, South Canterbury, is recognised as the stratotype for the boundary between the Waitakian and Otaian Stages. Principal problems with the boundary are the restriction of existing bioevent proxies to shelf and upper slope environments and its uncertain age. These topics are addressed by a multidisplinary study of a 125 m section about the boundary, which examines its lithostratigraphy, depositional setting, biostratigraphy, correlation, and geochronology.
The lower siltstone lithofacies (0-38.5 m) was deposited at upper bathyal depths (200-600 m) in a marginal basin which was partially sheltered from fully oceanic circulation by a submarine high and islands. The site was covered by cool-temperate water and was probably adjacent to the Subtropical Convergence. This unit is succeeded by the banded lithofacies (38.5-106 m) and the upper siltstone lithofacies (basal 19 m studied). Paleodepth probably declined up-sequence, but deposition at shelf depths is not definitely indicated. A cyclic pattern of abundance spikes in benthic and planktonic foraminifera commences 9 m above base and extends to 73 m in the banded lithofacies. Oxygen isotope excursions (up to 2.08%) in Euuvigerina miozea and Cibicides novozelandicus are greatest within the interval containing the abundance spikes. The stage boundary occurs in the banded lithofacies at the highest abundance spike (73 m). Although condensed intervals might affect the completeness of the section, they are not associated with sedimentary discontinuities, and we consider that the section is suitable as a biostratigraphic reference.
Spores, pollens, dinoflagellates, calcareous nannofossils, foraminifera, bryozoans, and ostracods are preserved near the boundary, but molluscs principally occur higher, in the shallower upper siltstone lithofacies. Siliceous microfossils are rare. There is considerable scope for further biostratigraphic research.
The primary event marking the boundary at 73 m is the appearance of the benthic foraminifer Ehrenbergina marwicki. This is a distinctive and widely distributed event but is restricted to shelf and upper bathyal environments. Supplementary events in planktonic foraminifera and calcareous nannofossils were researched. Highest occurrences of Globigerina brazieri and G. euapertura are recorded at 47 and 58 m. There is a marked decline in relative abundance of Paragloborotalia spp. at 62 m. Helicosphaera carteri becomes more abundant than H. euphratis between 56 and 87 m. These events are not exact proxies for the boundary but they may usefully indicate proximity to it. They occur in the interval of prominent spikes in foraminiferal abundance.
The Waitakian-Otaian boundary is dated at 21.7 Ma by strontium isotopes. Stable primary remanence could not be determined in a pilot paleomagnetic study of Bluecliffs specimens. However, specimens trended towards reversed polarity, and remagnetisation great circle analysis will allow directions to be calculated in future collections
- âŠ