422 research outputs found

    Coastal Flooding in Florida’s Big Bend Region with Application to Sea Level Rise Based on Synthetic Storms Analysis

    Get PDF
    Flooding is examined by comparing maximum envelopes of water against the 0.2% (= 1-in-500-year return-period) flooding surface generated as part of revising the Federal Emergency Management Agency\u27s flood insurance rate maps for Franklin, Wakulla, and Jefferson counties in Florida\u27s Big Bend Region. The analysis condenses the number of storms to a small fraction of the original 159 used in production. The analysis is performed by assessing which synthetic storms contributed to inundation extent (the extent of inundation into the floodplain), coverage (the overall surface area of the inundated floodplain) and the spatially variable 0.2% flooding surface. The results are interpreted in terms of storm attributes (pressure deficit, radius to; maximum winds, translation speed, storm heading, and landfall location) and the physical processes occurring within the natural system (storms surge and waves); both are contextualized against existing and new hurricane scales. The approach identifies what types of storms and storm attributes lead to what types of inundation, as measured in terms of extent and coverage, in Florida\u27s Big Bend Region and provides a basis in the identification of a select subset of synthetic storms for studying the impact of sea level rise. The sea level rise application provides a clear contrast between a dynamic approach versus that of a static approach

    Communications Considerations in the Context of an Interdisciplinary Sea Level Rise Impacts Assessment Project

    Get PDF
    Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchiv

    Mapping the protistan 'rare biosphere'

    Get PDF
    The use of cultivation-independent approaches to map microbial diversity, including recent work published in BMC Biology, has now shown that protists, like bacteria/archaea, are much more diverse than had been realized. Uncovering eukaryotic diversity may now be limited not by access to samples or cost but rather by the availability of full-length reference sequence data

    Surface Roughness Parameterization Using Land Use / Land Cover Enhanced by Lidar Point Cloud Data

    Get PDF
    Source: ICHE Conference Archive - https://mdi-de.baw.de/icheArchiv
    corecore