1 research outputs found
Lead Optimization of 1,4-Azaindoles as Antimycobacterial Agents
In a previous
report, we described the discovery of 1,4-azaindoles, a chemical series
with excellent in vitro and in vivo antimycobacterial potency through
noncovalent inhibition of decaprenylphosphoryl-β-d-ribose-2′-epimerase
(DprE1). Nevertheless, high mouse metabolic turnover and phosphodiesterase
6 (PDE6) off-target activity limited its advancement. Herein, we report
lead optimization of this series, culminating in potent, metabolically
stable compounds that have a robust pharmacokinetic profile without
any PDE6 liability. Furthermore, we demonstrate efficacy for 1,4-azaindoles
in a rat chronic TB infection model. We believe that compounds from
the 1,4-azaindole series are suitable for in vivo combination and
safety studies