34 research outputs found

    Androgen Regulated Genes in Human Prostate Xenografts in Mice: Relation to BPH and Prostate Cancer

    Get PDF
    Benign prostatic hyperplasia (BPH) and prostate carcinoma (CaP) are linked to aging and the presence of androgens, suggesting that androgen regulated genes play a major role in these common diseases. Androgen regulation of prostate growth and development depends on the presence of intact epithelial-stromal interactions. Further, the prostatic stroma is implicated in BPH. This suggests that epithelial cell lines are inadequate to identify androgen regulated genes that could contribute to BPH and CaP and which could serve as potential clinical biomarkers. In this study, we used a human prostate xenograft model to define a profile of genes regulated in vivo by androgens, with an emphasis on identifying candidate biomarkers. Benign transition zone (TZ) human prostate tissue from radical prostatectomies was grafted to the sub-renal capsule site of intact or castrated male immunodeficient mice, followed by the removal or addition of androgens, respectively. Microarray analysis of RNA from these tissues was used to identify genes that were; 1) highly expressed in prostate, 2) had significant expression changes in response to androgens, and, 3) encode extracellular proteins. A total of 95 genes meeting these criteria were selected for analysis and validation of expression in patient prostate tissues using quantitative real-time PCR. Expression levels of these genes were measured in pooled RNAs from human prostate tissues with varying severity of BPH pathologic changes and CaP of varying Gleason score. A number of androgen regulated genes were identified. Additionally, a subset of these genes were over-expressed in RNA from clinical BPH tissues, and the levels of many were found to correlate with disease status. Our results demonstrate the feasibility, and some of the problems, of using a mouse xenograft model to characterize the androgen regulated expression profiles of intact human prostate tissues

    Patient Safety in the Cardiac Operating Room: Human Factors and Teamwork: A Scientific Study from the American Heart Association

    Get PDF
    The cardiac surgical operating room (OR) is a complex environment in which highly trained subspecialists interact with each other using sophisticated equipment to care for patients with severe cardiac disease and significant comorbidities. Thousands of patient lives have been saved or significantly improved with the advent of modern cardiac surgery. Indeed, both mortality and morbidity for coronary artery bypass surgery have decreased during the past decade. Nonetheless, the highly skilled and dedicated personnel in cardiac ORs are human and will make errors. Refined techniques, advanced technologies, and enhanced coordination of care have led to significant improvements in cardiac surgery outcomes

    Conditional Expression of Human 15-Lipoxygenase-1 in Mouse Prostate Induces Prostatic Intraepithelial Neoplasia: The FLiMP Mouse Model

    Get PDF
    The incidence and mortality of prostate cancer (PCa) vary greatly in different geographic regions, for which lifestyle factors, such as dietary fat intake, have been implicated. Human 15-lipoxygenase-1 (h15-LO-1), which metabolizes polyunsaturated fatty acids, is a highly regulated, tissue-specific, lipid-peroxidating enzyme that functions in physiological membrane remodeling and in the pathogenesis of atherosclerosis, inflammation, and carcinogenesis. We have shown that aberrant overexpression of 15-LO-1 occurs in human PCa, particularly high-grade PCa, and in high-grade prostatic intraepithelial neoplasia (HGPIN), and that the murine orthologue is increased in SV40-based genetically engineered mouse (GEM) models of PCa, such as LADY and TRansgenic Adenocarcinoma of Mouse Prostate. To further define the role of 15-LO-1 in prostate carcinogenesis, we established a novel GEM model with targeted overexpression of h15-LO-1 in the prostate [human fifteen lipoxygenase-1 in mouse prostate (FLiMP)]. We used a Cre- mediated and a loxP-mediated recombination strategy to target h15-LO-1 specifically to the prostate of C57BL/6 mice. Wild-type (wt), FLiMP(+/-), and FLiMP(+/+) mice aged 7 to 21, 24 to 28, and 35 weeks were characterized by histopathology, immunohistochemistry (IHC), and DNA/RNA and enzyme analyses. Compared to wt mice, h15-LO-1 enzyme activity was increased similarly in both homozygous FLiMP(+/+) and hemizygous FLiMP(+/-) prostates. Dorsolateral and ventral prostates of FLiMP mice showed focal and progressive epithelial hyperplasia with nuclear atypia, indicative of the definition of mouse prostatic intraepithelial neoplasia (mPIN) according to the National Cancer Institute. These foci showed increased proliferation by Ki-67 IHC. No progression to invasive PCa was noted up to 35 weeks. By IHC, h15-LO-1 expression was limited to luminal epithelial cells, with increased expression in mPIN foci (similar to human HGPIN). In summary, targeted overexpression of h15-LO-1 (a gene overexpressed in human PCa and HGPIN) to mouse prostate is sufficient to promote epithelial proliferation and mPIN development. These results support 15-LO-1 as having a role in prostate tumor initiation and as an early target for dietary or other prevention strategies. The FLiMP mouse model should also be useful in crosses with other GEM models to further define the combinations of molecular alterations necessary for PCa progression

    Overexpression of 12/15-Lipoxygenase, an Ortholog of Human 15-Lipoxygenase-1, in the Prostate Tumors of TRAMP Mice

    No full text
    Changes in the expression and activity of lipidmetabolizing enzymes, including the linoleic acid (LA)-metabolizing enzyme 15-lipoxygenase-1 (15-LO-1), may play a role in the development and progression of human prostate carcinoma (PCa). We reported that human 15-LO-1 (designated as leukocyte type 12-LO or 12/15-LO in mouse) is expressed in human prostate and increased in PCa, particularly high-grade PCa. Genetically engineered mouse (GEM) models of PCa could facilitate the study of this gene and its regulation and function in PCa progression. In this study, we examine the protein expression and enzyme activity levels of 12/15-LO associated with PCa progression in the TRansgenic Adenocarcinoma of Mouse Prostate (TRAMP) model of PCa. This GEM model develops prostatic intraepithelial neoplasia (PIN), followed by invasive gland-forming PCa and invasive and metastatic less differentiated PCa, with neuroendocrine (NE) differentiation (NE Ca). In the wild-type and TRAMP prostates, the most prominent LA metabolite was 13-hydroxyoctadecadienoic acid (13-HODE). Lesser amounts of 12-hydroxyeicosatetraenoic acid and 15-hydroxyeicosatetraenoic acid (HETE) were made from arachidonic acid (AA). In TRAMP prostates, 12/15-LO activity was increased compared to wild type at 20, 29, 39, and 49 weeks, as assessed by LA conversion to 13-HODE, and by AA conversion to 12/15-HETE, respectively. Immunostaining demonstrated that the increased capacity to generate 13-HODE was paralleled by an increase in neoplastic epithelial expression of 12/15-LO in PIN and invasive carcinomas. In conclusion, although there is a basal 12/15-LO activity in the wild-type mouse prostate, there is a marked increase in the expression of 12/15-LO with TRAMP PCa progression, paralleling our previously reported increased expression of the ortholog 15-LO-1 in high-grade human PCa. Thus, 12/15-LO and LA metabolism in the TRAMP model shares similarities to human PCa, and may allow to confirm a role for LA metabolism and other biologic functions of 15-LO-1 in human PCa. In addition, the TRAMP model will serve as a tool for testing the suitability of 12/15-LO—and ultimately human 15-LO—as a therapeutic target during PCa progression

    Reduced 15S-Lipoxygenase-2 Expression in Esophageal Cancer Specimens and Cells and Upregulation In Vitro by the Cyclooxygenase-2 Inhibitor, NS398

    No full text
    Alterations in arachidonic acid metabolism are involved in human carcinogenesis. Cyclooxygenase (COX) and lipoxygenase (LOX) are key enzymes in this metabolism. We analyzed the expression of 15S-lipoxygenase-2 (15-LOX-2) mRNA and protein in surgical specimens from normal (N=37) and malignant (63) esophageal tissues using in situ hybridization and immunohistochemistry (IHC), and in normal (1), premalignant (1), and malignant (5) esophageal cell lines using Northern and Western blotting. 15-LOX-2 was expressed in normal esophageal epithelial cells (EECs) at the highest levels, whereas an SV40-immortalized HET-1A line and three of five esophageal cancer cell lines failed to express it at detectable levels. 15-LOX-2 was detected in 76% (28/37) of the normal esophageal mucosae, but only in 46% (29/63) of the cancer specimens using IHC (P<.01). Transient transfection of 15-LOX-2 expression vectors into esophageal cancer cells significantly inhibited the proliferation of 15-LOX-2-negative cancer cells. The COX-2 inhibitor, NS398, induced 15-LOX-2 expression in esophageal cancer cells, which is associated with reduced cell viability. This study demonstrated that 15-LOX-2 expression is lost in esophageal cancers and that the induction of 15-LOX-2 can inhibit cancer cell proliferation. Further investigation of the effects of nonsteroidal anti-inflammatory drugs on 15-LOX-2 expression and apoptosis in esophageal cancer cells may be warranted

    Bioluminescence Imaging of Vascular Endothelial Growth Factor Promoter Activity in Murine Mammary Tumorigenesis

    No full text
    Vascular endothelial growth factor (VEGF) is a major inducer of angiogenesis. We generated a transgenic reporter mouse, VEGF-GL, in which an enhanced green fluorescent protein-luciferase fusion protein is expressed under the control of a human VEGF-A promoter. The VEGF-GL mouse exhibited intense bioluminescence throughout the body at 1 week of age. The signals rapidly declined to a relatively low level as the mice grew. The adult VEGF-GL mouse showed restricted bioluminescence to the areas undergoing wound healing. In contrast, the VEGF-GL mice, which were crossed with mouse mammary tumor virus-polyoma virus middle T antigen transgenic mammary tumor mice, exhibited prominent bioluminescence in the tumors, correlating with VEGF transcription. Tumor bioluminescence was observed in the bigenic mice as early as 8 weeks, before tumors were palpable, and the signals increased with tumor growth. In conclusion, the VEGF-GL mouse permits longitudinal and quantitative assessment of VEGF promoter activity in vivo. The model should facilitate understanding of the molecular controls and pathways that regulate VEGF transcription in vivo

    The Loss of TGF-β Signaling Promotes Prostate Cancer Metastasis

    Get PDF
    In breast and colon cancers, transforming growth factor (TGF)-β signaling initially has an antineoplastic effect, inhibiting tumor growth, but eventually exerts a proneoplastic effect, increasing motility and cancer spread. In prostate cancer, studies using human samples have correlated the loss of the TGF-β type II receptor (TβRII) with higher tumor grade. To determine the effect of an inhibited TGF-β pathway on prostate cancer, we bred transgenic mice expressing the tumorigenic SV40 large T antigen in the prostate with transgenic mice expressing a dominant negative TβRII mutant (DNIIR) in the prostate. Transgene( s) and TGF-β1 expression were identified in the prostate and decreased protein levels of plasminogen activator inhibitor type I, as a marker for TGF-β signaling, correlated with expression of the DNIIR. Although the sizes of the neoplastic prostates were not enlarged, increased amounts of metastasis were observed in mice expressing both transgenes compared to age-matched control mice expressing only the large T antigen transgene. Our study demonstrates for the first time that a disruption of TGF-β signaling in prostate cancer plays a causal role in promoting tumor metastasis
    corecore