16 research outputs found

    Selective Gas-Phase Ion/Ion Reactions: Enabling Disulfide Mapping via Oxidation and Cleavage of Disulfide Bonds in Intermolecularly-Linked Polypeptide Ions

    No full text
    The selective gas-phase oxidation of disulfide bonds to their thiosulfinate form using ion/ion reactions and subsequent cleavage is demonstrated here. Oxidizing reagent anions are observed to attach to all polypeptides, regardless of amino acid composition. Direct proton transfer yielding a charge-reduced peptide is also frequently observed. Activation of the ion/ion complex between an oxidizing reagent anion and a disulfide-containing peptide cation results in oxygen transfer from the reagent anion to the peptide cation to form the [M+H+O]<sup>+</sup> species. This thiosulfinate derivative can undergo one of several rearrangements that result in cleavage of the disulfide bond. Species containing an intermolecular disulfide bond undergo separation of the two chains upon activation. Further activation can be used to generate more sequence information from each chain. These oxidation ion/ion reactions have been used to illustrate the identification of S-glutathionylated and S-cysteinylated peptides, in which low molecular weight thiols are attached to cysteine residues in peptides via disulfide bonds. The oxidation chemistry effectively labels peptide ions with readily oxidized groups, such as disulfide bonds. This enables a screening approach for the identification of disulfide-linked peptides in a disulfide mapping application involving enzymatic digestion. The mixtures of ions generated by tryptic and peptic digestions of lysozyme and insulin, respectively, without prior separation or isolation were subjected both to oxidation and proton transfer ion/ion chemistry to illustrate the identification of peptides in the mixtures with readily oxidized groups

    Ion/Ion Reactions of MALDI-Derived Peptide Ions: Increased Sequence Coverage via Covalent and Electrostatic Modification upon Charge Inversion

    No full text
    Atmospheric pressure matrix-assisted laser desorption/ionization (AP-MALDI)-derived tryptic peptide ions have been subjected to ion/ion reactions with doubly deprotonated 4-formyl-1,3-benzenedisulfonic acid (FBDSA) in the gas-phase. The ion/ion reaction produces a negatively charged electrostatic complex composed of the peptide cation and reagent dianion, whereupon dehydration of the complex via collision-induced dissociation (CID) produces a Schiff base product anion. Collisional activation of modified lysine-terminated tryptic peptide anions is consistent with a covalent modification of unprotonated primary amines (i.e., N-terminus and ε-NH<sub>2</sub> of lysine). Modified arginine-terminated tryptic peptides have shown evidence of a covalent modification at the N-terminus and a noncovalent interaction with the arginine residue. The modified anions yield at least as much sequence information upon CID as the unmodified cations for the small tryptic peptides examined here and more sequence information for the large tryptic peptides. This study represents the first demonstration of gas-phase ion/ion reactions involving MALDI-derived ions. In this case, covalent and electrostatic modification charge inversion is shown to enhance MALDI tandem mass spectrometry of tryptic peptides

    Electrospray Droplet Exposure to Organic Vapors: Metal Ion Removal from Proteins and Protein Complexes

    No full text
    The exposure of aqueous nanoelectrospray droplets to various organic vapors can dramatically reduce sodium adduction on protein ions in positive ion mass spectra. Volatile alcohols, such as methanol, ethanol, and isopropanol lead to a significant reduction in sodium ion adduction but are not as effective as acetonitrile, acetone, and ethyl acetate. Organic vapor exposure in the negative ion mode, on the other hand, has essentially no effect on alkali ion adduction. Evidence is presented to suggest that the mechanism by which organic vapor exposure reduces alkali ion adduction in the positive mode involves the depletion of alkali metal ions via ion evaporation of metal ions solvated with organic molecules. The early generation of metal/organic cluster ions during the droplet desolvation process results in fewer metal ions available to condense on the protein ions formed via the charged residue mechanism. These effects are demonstrated with holomyoglobin ions to illustrate that the metal ion reduction takes place without detectable protein denaturation, which might be revealed by heme loss or an increase in charge state distribution. No evidence is observed for denaturation with exposure to any of the organic vapors evaluated in this work

    Affecting Protein Charge State Distributions in Nano-Electrospray Ionization via In-Spray Solution Mixing Using Theta Capillaries

    No full text
    Borosilicate theta glass capillaries pulled to serve as nanoelectrospray ionization emitters are used for short time-scale mixing of protein and acid solutions during the electrospray process to alter protein charge state distributions (CSDs) without modifying the sample solution. The extent of protein CSD shifting/denaturing can be tailored by acid identity and concentration. The observed CSD(s) are protein dependent, and the short mixing time-scale enables the study of short-lived unfolding intermediates and higher charge states of noncovalent protein complexes, including those of holomyoglobin. Additionally, the theta tips provide a simple and inexpensive method for mixing nonvolatile reagents such as supercharging agents, which cannot be used with previously developed vapor leak-in techniques, with protein solutions during the electrospray process

    Gas-Phase Conjugation to Arginine Residues in Polypeptide Ions via <i>N</i>-Hydroxysuccinimide Ester-Based Reagent Ions

    No full text
    Gas-phase conjugation to unprotonated arginine side-chains via <i>N</i>-hydroxysuccinimide (NHS) esters is demonstrated through both charge reduction and charge inversion ion/ion reactions. The unprotonated guanidino group of arginine can serve as a strong nucleophile, resulting in the facile displacement of NHS from NHS esters with concomitant covalent modification of the arginine residue. This reactivity is analogous to that observed with unprotonated primary amines such as the N-terminus or ε-amino group of lysine. In solution, however, the arginine residues tend to be protonated at pH values low enough to prevent hydrolysis of NHS esters, which would render them relatively unreactive with NHS esters. This work demonstrates novel means for gas-phase conjugation to arginine side chains in polypeptide ions

    Selective Gas-Phase Oxidation and Localization of Alkylated Cysteine Residues in Polypeptide Ions via Ion/Ion Chemistry

    No full text
    The thiol group in cysteine residues is susceptible to several post-translational modifications (PTMs), including prenylation, nitrosylation, palmitoylation, and the formation of disulfide bonds. Additionally, cysteine residues involved in disulfide bonds are commonly reduced and alkylated prior to mass spectrometric analysis. Several of these cysteine modifications, specifically S-alkyl modifications, are susceptible to gas-phase oxidation via selective ion/ion reactions with periodate anions. Multiply protonated peptides containing modified cysteine residues undergo complex formation upon ion/ion reaction with periodate anions. Activation of the ion/ion complexes results in oxygen transfer from the reagent to the modified sulfur residue to create a sulfoxide functionality. Further activation of the sulfoxide derivative yields abundant losses of the modification with the oxidized sulfur as a sulfenic acid (namely, XSOH) to generate a dehydroalanine residue. This loss immediately indicates the presence of an S-alkyl cysteine residue, and the mass of the loss can be used to easily deduce the type of modification. An additional step of activation can be used to localize the modification to a specific residue within the peptide. Selective cleavage to create c- and z-ions N-terminal to the dehydroalanine residue is often noted. As these types of ions are not typically observed upon collision-induced dissociation (CID), they can be used to immediately indicate where in the peptide the PTM was originally located

    Gas-Phase Transformation of Phosphatidylcholine Cations to Structurally Informative Anions via Ion/Ion Chemistry

    No full text
    Gas-phase transformation of synthetic phosphatidylcholine (PC) monocations to structurally informative anions is demonstrated via ion/ion reactions with doubly deprotonated 1,4-phenylenedipropionic acid (PDPA). Two synthetic PC isomers, 1-palmitoyl-2-oleoyl-<i>sn</i>-glycero-3-phosphocholine (PC<sub>16:0/18:1</sub>) and 1-oleoyl-2-palmitoyl-<i>sn</i>-glycero-3-phosphocholine (PC<sub>18:1/16:0</sub>), were subjected to this ion/ion chemistry. The product of the ion/ion reaction is a negatively charged complex, [PC + PDPA – H]<sup>−</sup>. Collisional activation of the long-lived complex causes transfer of a proton and methyl cation to PDPA, generating [PC – CH<sub>3</sub>]<sup>−</sup>. Subsequent collisional activation of the demethylated PC anions produces abundant fatty acid carboxylate anions and low-abundance acyl neutral losses as free acids and ketenes. Product ion spectra of [PC – CH<sub>3</sub>]<sup>−</sup> suggest favorable cleavage at the <i>sn</i>-2 position over the <i>sn</i>-1 due to distinct differences in the relative abundances. In contrast, collisional activation of PC cations is absent of abundant fatty acid chain-related product ions and typically indicates only the lipid class via formation of the phosphocholine cation. A solution phase method to produce the gas-phase adducted PC anion is also demonstrated. Product ion spectra derived from the solution phase method are similar to the results generated via ion/ion chemistry. This work demonstrates a gas-phase means to increase structural characterization of phosphatidylcholines via ion/ion chemistry

    Fourier-Transform MS and Closed-Path Multireflection Time-of-Flight MS Using an Electrostatic Linear Ion Trap

    No full text
    An electrostatic linear ion trap (ELIT) has been configured to allow for the simultaneous acquisition of mass spectra via Fourier transform (FT) techniques (frequency measurement) and via time-of-flight (TOF; time measurement). In the former case, the time-domain image charge derived from a pick-up electrode in the field-free region of the ELIT is converted to frequency-domain data via Fourier transformation (i.e., FT-ELIT MS). In the latter case, the time difference between ion injection into the ELIT and ion detection after release from the ELIT using a microchannel plate (MCP) enables the acquisition of multireflection time-of-flight mass spectra (MR-TOF MS). The ELIT geometry facilitates the acquisition of both types of data simultaneously because the detection schemes are independent and do not preclude one another. The two MS approaches exhibit a degree of complementarity. Resolution increases much faster with time with the MR-TOF approach, for example, but the closed-path nature of executing MR-TOF in an ELIT limits both the <i>m</i>/<i>z</i> range and the peak capacity. For this reason, the FT-ELIT MS approach is most appropriate for wide <i>m</i>/<i>z</i> range applications, whereas MR-TOF MS can provide advantages in a “zoom-in” mode in which moderate resolution (<i>M</i>/Δ<i>M</i><sub>fwhm</sub> ≈ 10000) at short analysis times (10 ms) is desirable

    Top-Down Interrogation of Chemically Modified Oligonucleotides by Negative Electron Transfer and Collision Induced Dissociation

    No full text
    Two sets of synthetic 21–23mer oligonucleotides with various types of 2′-position modifications have been studied with tandem mass spectrometry using ion trap collision-induced dissociation (IT-CID) and negative electron transfer (NET)-CID. A systematic study has been conducted to define the limitations of IT-CID in sequencing such 2′-chemically modified oligonucleotides. We found that IT-CID is sufficient in characterizing oligonucleotide sequences that do not contain DNA residues, where high sequence coverage can be achieved by performing IT-CID on multiple charge states. However, oligonucleotides containing DNA residues gave limited backbone fragmentation with IT-CID, largely due to dominant fragmentation at the DNA residue sites. To overcome this limitation, we employed the negative electron transfer to strip an electron from the multiply charged oligonucleotide anion. Then, the radical anion species formed in this reaction can fragment via an alternative radical-directed dissociation mechanism. Unlike IT-CID, NET-CID mainly generates a noncomplementary d/w ion series. Furthermore, we found that NET-CID did not show preferential dissociations at the DNA residue sites and thus generated higher sequence coverage for the studied oligonucleotide. Information from NET-CID of different charge states is not fully redundant such that the examination of multiple charge states can lead to more extensive sequence confirmation. This work demonstrates that the NET-CID is a valuable tool to provide high sequence coverage for chemically modified oligonucleotides, and such detailed characterization can serve as an important assay to control the quality of therapeutic oligonucleotides that are produced under the good manufacture practice (GMP) regulations

    Gas-Phase Ion/Ion Reactions to Enable Radical-Directed Dissociation of Fatty Acid Ions: Application to Localization of Methyl Branching

    No full text
    Methyl branching on the carbon chains of fatty acids and fatty esters is among the structural variations encountered with fatty acids and fatty esters. Branching in fatty acid/ester chains is particularly prominent in bacterial species and, for example, in vernix caseosa and sebum. The distinction of branched chains from isomeric straight-chain species and the localization of branching can be challenging to determine by mass spectrometry (MS). Condensed-phase derivatization strategies, often used in conjunction with separations, are most commonly used to address the identification and characterization of branched fatty acids. In this work, a gas-phase ion/ion strategy is presented that obviates condensed-phase derivatization and introduces a radical site into fatty acid ions to facilitate radical-directed dissociation (RDD). The gas-phase approach is also directly amenable to fatty acid anions generated via collision-induced dissociation from lipid classes that contain fatty esters. Specifically, divalent magnesium complexes bound to two terpyridine ligands that each incorporate a ((2,2,6,6-tetramethyl-1-piperidine-1-yl)oxy) (TEMPO) moiety are used to charge-invert fatty acid anions. Following the facile loss of one of the ligands and the TEMPO group of the remaining ligand, a radical site is introduced into the complex. Subsequent collision-induced dissociation (CID) of the complex exhibits preferred cleavages that localize the site(s) of branching. The approach is illustrated with iso-, anteiso-, and isoprenoid branched-chain fatty acids and an intact glycerophospholipid and is applied to a mixture of branched- and straight-chain fatty acids derived from Bacillus subtilis
    corecore