1,040 research outputs found

    Glycosylation-mediated phenylpropanoid partitioning in Populus tremuloides cell cultures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Phenylpropanoid-derived phenolic glycosides (PGs) and condensed tannins (CTs) comprise large, multi-purpose non-structural carbon sinks in <it>Populus</it>. A negative correlation between PG and CT concentrations has been observed in several studies. However, the molecular mechanism underlying the relationship is not known.</p> <p>Results</p> <p><it>Populus </it>cell cultures produce CTs but not PGs under normal conditions. Feeding salicyl alcohol resulted in accumulation of salicins, the simplest PG, in the cells, but not higher-order PGs. Salicin accrual reflected the stimulation of a glycosylation response which altered a number of metabolic activities. We utilized this suspension cell feeding system as a model for analyzing the possible role of glycosylation in regulating the metabolic competition between PG formation, CT synthesis and growth. Cells accumulated salicins in a dose-dependent manner following salicyl alcohol feeding. Higher feeding levels led to a decrease in cellular CT concentrations (at 5 or 10 mM), and a negative effect on cell growth (at 10 mM). The competition between salicin and CT formation was reciprocal, and depended on the metabolic status of the cells. We analyzed gene expression changes between controls and cells fed with 5 mM salicyl alcohol for 48 hr, a time point when salicin accumulation was near maximum and CT synthesis was reduced, with no effect on growth. Several stress-responsive genes were up-regulated, suggestive of a general stress response in the fed cells. Salicyl alcohol feeding also induced expression of genes associated with sucrose catabolism, glycolysis and the Krebs cycle. Transcript levels of phenylalanine ammonia lyase and most of the flavonoid pathway genes were reduced, consistent with down-regulated CT synthesis.</p> <p>Conclusions</p> <p>Exogenous salicyl alcohol was readily glycosylated in <it>Populus </it>cell cultures, a process that altered sugar utilization and phenolic partitioning in the cells. Using this system, we identified candidate genes for glycosyltransferases that may mediate the glycosylation, and for transporters that mediate the subcellular compartmentalization of sugars and phenolic glycosides. The suspension cells appear to represent a facile system for dissecting the regulation of phenolic carbon partitioning, and in turn, its effects on growth in <it>Populus</it>.</p

    PEPFAR Public Health Evaluation - Care and Support - Phase 2 Uganda

    Get PDF
    Phase 2 consisted of a longitudinal cohort study to measure patient-reported outcomes of care and support, a costing survey, and qualitative interviews to understand patient and carer experiences

    PEPFAR Public Health Evaluation - Care and Support - Phase 2 Kenya

    Get PDF
    Phase 2 consisted of a longitudinal cohort study to measure patient-reported outcomes of care and support, a costing survey, and qualitative interviews to understand patient and carer experiences

    Listening and Negotiation II

    Get PDF
    This paper is based on a panel held in June, 2017 in Columbus, Ohio, jointly sponsored by the Women in Engineering Division and by the Minorities in Engineering Division. It is focused on negotiation, with an emphasis on providing practical strategies that are relevant in an academic setting. The panel featured academic leaders at multiple levels, including professor, chair and dean, from diverse engineering institutions, ranging from teaching-centric to heavily research-focused. Panelists discussed strategies for negotiation, with an emphasis on an approach that meets the interests of both parties to the extent possible. The panel was administrated with an opening lightning-round in which each panelist provided one strategy for negotiation; this was followed by a role-play of a negotiation, followed with questions and input from the audience. This paper, associated with the panel, provides several examples of negotiation that were presented in the panel discussion

    Capsular polysaccharide inhibits vaccine-induced O-antigen antibody binding and function across both classical and hypervirulent K2:O1 strains of Klebsiella pneumoniae

    Get PDF
    Klebsiella pneumoniae presents as two circulating pathotypes: classical K. pneumoniae (cKp) and hypervirulent K. pneumoniae (hvKp). Classical isolates are considered urgent threats due to their antibiotic resistance profiles, while hvKp isolates have historically been antibiotic susceptible. Recently, however, increased rates of antibiotic resistance have been observed in both hvKp and cKp, further underscoring the need for preventive and effective immunotherapies. Two distinct surface polysaccharides have gained traction as vaccine candidates against K. pneumoniae: capsular polysaccharide and the O-antigen of lipopolysaccharide. While both targets have practical advantages and disadvantages, it remains unclear which of these antigens included in a vaccine would provide superior protection against matched K. pneumoniae strains. Here, we report the production of two bioconjugate vaccines, one targeting the K2 capsular serotype and the other targeting the O1 O-antigen. Using murine models, we investigated whether these vaccines induced specific antibody responses that recognize K2:O1 K. pneumoniae strains. While each vaccine was immunogenic in mice, both cKp and hvKp strains exhibited decreased O-antibody binding in the presence of capsule. Further, O1 antibodies demonstrated decreased killing in serum bactericidal assays with encapsulated strains, suggesting that the presence of K. pneumoniae capsule blocks O1-antibody binding and function. Finally, the K2 vaccine outperformed the O1 vaccine against both cKp and hvKp in two different murine infection models. These data suggest that capsule-based vaccines may be superior to O-antigen vaccines for targeting hvKp and some cKp strains, due to capsule blocking the O-antigen

    Repression of Lignin Biosynthesis Promotes Cellulose Accumulation and Growth in Transgenic Trees

    Get PDF
    Because lignin limits the use of wood for fiber, chemical, and energy production, strategies for its downregulation are of considerable interest. We have produced transgenic aspen (Populus tremuloidesMichx.) trees in which expression of a lignin biosynthetic pathway genePt4CL1 encoding 4-coumarate:coenzyme A ligase (4CL) has been downregulated by antisense inhibition. Trees with suppressed Pt4CL1expression exhibited up to a 45% reduction of lignin, but this was compensated for by a 15% increase in cellulose. As a result, the total lignin–cellulose mass remained essentially unchanged. Leaf, root, and stem growth were substantially enhanced, and structural integrity was maintained both at the cellular and whole-plant levels in the transgenic lines. Our results indicate that lignin and cellulose deposition could be regulated in a compensatory fashion, which may contribute to metabolic flexibility and a growth advantage to sustain the long-term structural integrity of woody perennials

    Hydrodynamic modelling of protein conformation in solution: ELLIPS and HYDRO

    Get PDF
    The last three decades has seen some important advances in our ability to represent the conformation of proteins in solution on the basis of hydrodynamic measurements. Advances in theoretical modeling capabilities have been matched by commensurate advances in the precision of hydrodynamic measurements. We consider the advances in whole-body (simple ellipsoid-based) modeling—still useful for providing an overall idea of molecular shape, particularly for those systems where only a limited amount of data is available—and outline the ELLIPS suite of algorithms which facilitates the use of this approach. We then focus on bead modeling strategies, particularly the surface or shell–bead approaches and the HYDRO suite of algorithms. We demonstrate how these are providing great insights into complex issues such as the conformation of immunoglobulins and other multi-domain complexes
    • …
    corecore