4,716 research outputs found

    Biological Systems from an Engineer’s Point of View

    Get PDF
    Mathematical modeling of the processes that pattern embryonic development (often called biological pattern formation) has a long and rich history [1,2]. These models proposed sets of hypothetical interactions, which, upon analysis, were shown to be capable of generating patterns reminiscent of those seen in the biological world, such as stripes, spots, or graded properties. Pattern formation models typically demonstrated the sufficiency of given classes of mechanisms to create patterns that mimicked a particular biological pattern or interaction. In the best cases, the models were able to make testable predictions [3], permitting them to be experimentally challenged, to be revised, and to stimulate yet more experimental tests (see review in [4]). In many other cases, however, the impact of the modeling efforts was mitigated by limitations in computer power and biochemical data. In addition, perhaps the most limiting factor was the mindset of many modelers, using Occam’s razor arguments to make the proposed models as simple as possible, which often generated intriguing patterns, but those patterns lacked the robustness exhibited by the biological system. In hindsight, one could argue that a greater attention to engineering principles would have focused attention on these shortcomings, including potential failure modes, and would have led to more complex, but more robust, models. Thus, despite a few successful cases in which modeling and experimentation worked in concert, modeling fell out of vogue as a means to motivate decisive test experiments. The recent explosion of molecular genetic, genomic, and proteomic data—as well as of quantitative imaging studies of biological tissues—has changed matters dramatically, replacing a previous dearth of molecular details with a wealth of data that are difficult to fully comprehend. This flood of new data has been accompanied by a new influx of physical scientists into biology, including engineers, physicists, and applied mathematicians [5–7]. These individuals bring with them the mindset, methodologies, and mathematical toolboxes common to their own fields, which are proving to be appropriate for analysis of biological systems. However, due to inherent complexity, biological systems seem to be like nothing previously encountered in the physical sciences. Thus, biological systems offer cutting edge problems for most scientific and engineering-related disciplines. It is therefore no wonder that there might seem to be a “bandwagon” of new biology-related research programs in departments that have traditionally focused on nonliving systems. Modeling biological interactions as dynamical systems (i.e., systems of variables changing in time) allows investigation of systems-level topics such as the robustness of patterning mechanisms, the role of feedback, and the self-regulation of size. The use of tools from engineering and applied mathematics, such as sensitivity analysis and control theory, is becoming more commonplace in biology. In addition to giving biologists some new terminology for describing their systems, such analyses are extremely useful in pointing to missing data and in testing the validity of a proposed mechanism. A paper in this issue of PLoS Biology clearly and honestly applies analytical tools to the authors’ research and obtains insights that would have been difficult if not impossible by other means [8]

    Diseases of Soybean

    Get PDF

    Charcoal Rot

    Get PDF

    Diseases of Soybean: White Mold

    Get PDF

    Diseases of Soybean: Sudden Death Syndrome

    Get PDF

    Ghost-tree: creating hybrid-gene phylogenetic trees for diversity analyses.

    Get PDF
    BackgroundFungi play critical roles in many ecosystems, cause serious diseases in plants and animals, and pose significant threats to human health and structural integrity problems in built environments. While most fungal diversity remains unknown, the development of PCR primers for the internal transcribed spacer (ITS) combined with next-generation sequencing has substantially improved our ability to profile fungal microbial diversity. Although the high sequence variability in the ITS region facilitates more accurate species identification, it also makes multiple sequence alignment and phylogenetic analysis unreliable across evolutionarily distant fungi because the sequences are hard to align accurately. To address this issue, we created ghost-tree, a bioinformatics tool that integrates sequence data from two genetic markers into a single phylogenetic tree that can be used for diversity analyses. Our approach starts with a "foundation" phylogeny based on one genetic marker whose sequences can be aligned across organisms spanning divergent taxonomic groups (e.g., fungal families). Then, "extension" phylogenies are built for more closely related organisms (e.g., fungal species or strains) using a second more rapidly evolving genetic marker. These smaller phylogenies are then grafted onto the foundation tree by mapping taxonomic names such that each corresponding foundation-tree tip would branch into its new "extension tree" child.ResultsWe applied ghost-tree to graft fungal extension phylogenies derived from ITS sequences onto a foundation phylogeny derived from fungal 18S sequences. Our analysis of simulated and real fungal ITS data sets found that phylogenetic distances between fungal communities computed using ghost-tree phylogenies explained significantly more variance than non-phylogenetic distances. The phylogenetic metrics also improved our ability to distinguish small differences (effect sizes) between microbial communities, though results were similar to non-phylogenetic methods for larger effect sizes.ConclusionsThe Silva/UNITE-based ghost tree presented here can be easily integrated into existing fungal analysis pipelines to enhance the resolution of fungal community differences and improve understanding of these communities in built environments. The ghost-tree software package can also be used to develop phylogenetic trees for other marker gene sets that afford different taxonomic resolution, or for bridging genome trees with amplicon trees.Availabilityghost-tree is pip-installable. All source code, documentation, and test code are available under the BSD license at https://github.com/JTFouquier/ghost-tree

    Geography and Location Are the Primary Drivers of Office Microbiome Composition.

    Get PDF
    In the United States, humans spend the majority of their time indoors, where they are exposed to the microbiome of the built environment (BE) they inhabit. Despite the ubiquity of microbes in BEs and their potential impacts on health and building materials, basic questions about the microbiology of these environments remain unanswered. We present a study on the impacts of geography, material type, human interaction, location in a room, seasonal variation, and indoor and microenvironmental parameters on bacterial communities in offices. Our data elucidate several important features of microbial communities in BEs. First, under normal office environmental conditions, bacterial communities do not differ on the basis of surface material (e.g., ceiling tile or carpet) but do differ on the basis of the location in a room (e.g., ceiling or floor), two features that are often conflated but that we are able to separate here. We suspect that previous work showing differences in bacterial composition with surface material was likely detecting differences based on different usage patterns. Next, we find that offices have city-specific bacterial communities, such that we can accurately predict which city an office microbiome sample is derived from, but office-specific bacterial communities are less apparent. This differs from previous work, which has suggested office-specific compositions of bacterial communities. We again suspect that the difference from prior work arises from different usage patterns. As has been previously shown, we observe that human skin contributes heavily to the composition of BE surfaces. IMPORTANCE Our study highlights several points that should impact the design of future studies of the microbiology of BEs. First, projects tracking changes in BE bacterial communities should focus sampling efforts on surveying different locations in offices and in different cities but not necessarily different materials or different offices in the same city. Next, disturbance due to repeated sampling, though detectable, is small compared to that due to other variables, opening up a range of longitudinal study designs in the BE. Next, studies requiring more samples than can be sequenced on a single sequencing run (which is increasingly common) must control for run effects by including some of the same samples in all of the sequencing runs as technical replicates. Finally, detailed tracking of indoor and material environment covariates is likely not essential for BE microbiome studies, as the normal range of indoor environmental conditions is likely not large enough to impact bacterial communities
    • …
    corecore