9,292 research outputs found

    The bias of the submillimetre galaxy population: SMGs are poor tracers of the most massive structures in the z ~ 2 Universe

    Get PDF
    It is often claimed that overdensities of (or even individual bright) submillimetre-selected galaxies (SMGs) trace the assembly of the most-massive dark matter structures in the Universe. We test this claim by performing a counts-in-cells analysis of mock SMG catalogues derived from the Bolshoi cosmological simulation to investigate how well SMG associations trace the underlying dark matter structure. We find that SMGs exhibit a relatively complex bias: some regions of high SMG overdensity are underdense in terms of dark matter mass, and some regions of high dark matter overdensity contain no SMGs. Because of their rarity, Poisson noise causes scatter in the SMG overdensity at fixed dark matter overdensity. Consequently, rich associations of less-luminous, more-abundant galaxies (i.e. Lyman-break galaxy analogues) trace the highest dark matter overdensities much better than SMGs. Even on average, SMG associations are relatively poor tracers of the most significant dark matter overdensities because of 'downsizing': at z < ~2.5, the most-massive galaxies that reside in the highest dark matter overdensities have already had their star formation quenched and are thus no longer SMGs. At a given redshift, of the 10 per cent most-massive overdensities, only ~25 per cent contain at least one SMG, and less than a few per cent contain more than one SMG.Comment: 6 pages, 3 figures, 1 table; accepted for publication in MNRAS; minor revisions from previous version, conclusions unchange

    Biophysical drivers of carbon dioxide and methane fluxes in a restored tidal freshwater wetland

    Get PDF
    Wetlands store large amounts of carbon (C) in biomass and soils, playing a crucial role in offsetting greenhouse gas (GHG) emissions; however, they also account for 30% of global yearly CH4 emissions. Anthropogenic disturbance has led to the decline of natural wetlands throughout the United States, with a corresponding increase in created and restored wetlands. Studies characterizing biogeochemical processes in restored forested wetlands, particularly those that are both tidal and freshwater, are lacking but essential for informing science- based carbon management

    Regioselective Reactions of Highly Substituted Arynes

    Get PDF
    The fully regioselective reactivity of four new highly substituted silyl aryl triflate aryne precursors in aryne acyl-alkylation, acyl-alkylation/condensation, and heteroannulation reactions is reported. The application of these more complex arynes provides access to diverse natural product scaffolds and obviates late-stage functionalization of aromatic rings

    Flow transitions in two-dimensional foams

    Full text link
    For sufficiently slow rates of strain, flowing foam can exhibit inhomogeneous flows. The nature of these flows is an area of active study in both two-dimensional model foams and three dimensional foam. Recent work in three-dimensional foam has identified three distinct regimes of flow [S. Rodts, J. C. Baudez, and P. Coussot, Europhys. Lett. {\bf 69}, 636 (2005)]. Two of these regimes are identified with continuum behavior (full flow and shear-banding), and the third regime is identified as a discrete regime exhibiting extreme localization. In this paper, the discrete regime is studied in more detail using a model two dimensional foam: a bubble raft. We characterize the behavior of the bubble raft subjected to a constant rate of strain as a function of time, system size, and applied rate of strain. We observe localized flow that is consistent with the coexistence of a power-law fluid with rigid body rotation. As a function of applied rate of strain, there is a transition from a continuum description of the flow to discrete flow when the thickness of the flow region is approximately 10 bubbles. This occurs at an applied rotation rate of approximately 0.07s−10.07 {\rm s^{-1}}

    LoCoH: nonparameteric kernel methods for constructing home ranges and utilization distributions.

    Get PDF
    Parametric kernel methods currently dominate the literature regarding the construction of animal home ranges (HRs) and utilization distributions (UDs). These methods frequently fail to capture the kinds of hard boundaries common to many natural systems. Recently a local convex hull (LoCoH) nonparametric kernel method, which generalizes the minimum convex polygon (MCP) method, was shown to be more appropriate than parametric kernel methods for constructing HRs and UDs, because of its ability to identify hard boundaries (e.g., rivers, cliff edges) and convergence to the true distribution as sample size increases. Here we extend the LoCoH in two ways: "fixed sphere-of-influence," or r-LoCoH (kernels constructed from all points within a fixed radius r of each reference point), and an "adaptive sphere-of-influence," or a-LoCoH (kernels constructed from all points within a radius a such that the distances of all points within the radius to the reference point sum to a value less than or equal to a), and compare them to the original "fixed-number-of-points," or k-LoCoH (all kernels constructed from k-1 nearest neighbors of root points). We also compare these nonparametric LoCoH to parametric kernel methods using manufactured data and data collected from GPS collars on African buffalo in the Kruger National Park, South Africa. Our results demonstrate that LoCoH methods are superior to parametric kernel methods in estimating areas used by animals, excluding unused areas (holes) and, generally, in constructing UDs and HRs arising from the movement of animals influenced by hard boundaries and irregular structures (e.g., rocky outcrops). We also demonstrate that a-LoCoH is generally superior to k- and r-LoCoH (with software for all three methods available at http://locoh.cnr.berkeley.edu)

    Gambel’S Quail: A History of Research and Management at the Oracle Junction Study Area in Arizona

    Get PDF
    We analyzed current as well as historic call-count survey data, check station harvest data, season length, winter precipitation, and daily bag limits in the Oracle Junction Study Area, Arizona to verify factors affecting annual Gambel’s quail (Callipepla gambelii) harvest. Gambel’s quail is the only one of the 9 species of wild gallinaceous game birds found in Arizona endemic to the Sonoran Desert. Oracle Junction has been of particular importance to quail hunters, scientists, researchers, and managers because it has a consistent history of call-count surveys, open hunting seasons, hunter-harvest check stations, and available precipitation data. Oracle Junction provides a valuable ‘experiment’ of Gambel quail harvest management in Arizona

    The Total Synthesis of (–)-Scabrolide A

    Get PDF
    The first total synthesis of the norcembranoid diterpenoid scabrolide A is disclosed. The route begins with the synthesis of two chiral pool-derived fragments, which undergo a convergent coupling to expediently introduce all 19 carbon atoms of the natural product. An intramolecular Diels–Alder reaction and an enone–olefin cycloaddition/fragmentation sequence are then employed to construct the fused [5–6–7] linear carbocyclic core of the molecule and complete the total synthesis
    • …
    corecore